مقایسه میزان سرمی ویسفافین در دو سیستم بورت و وریدی افراد چاق مصرف تحت عمل بariatریک

چکیده

مقدمه: میزان مشارکت بافت چربی احشایی در ترشح ویسفافین و نقش آن در پاتوژن بیماری‌های متابولیک ناشی از چاقی در مطالعات انسانی هنوز به طور دقیق بررسی نشده است. هدف این مطالعه تعیین میزان ترشح ویسفافین از بافت چربی احشایی و بررسی ارتباط آن با برخی فاکتورهای خونی و شاخص HOMA در افراد چاق مصرف با عمل جراحی است. روش‌ها: ۶۴ فرد چاق مصرف

BMI

≥ ۳۵ (BMI) با شرایط لازم جهت انجام شدند. در هنگامی که میزان سپتوم پورت و وریدی میزان خونی گیری انجام شد. در نمونه‌های حاصل از سیستم وریدی: پروفایل چربی، گلوقوراک، انصولزیو انیژ و خونی گیری در میزان شاخص HOMA مشاهده شدند. ویسفافین در سیستم پورت و وریدی بررسی شد.

یافته‌ها: سطح سرمی ویسفافین در سیستم پورت بهتر معین داری نسبت به سیستم وریدی: پروفایل چربی، گلوقوراک، انصولزیو انیژ و

BMI

(۰/۵۱±۰/۱۸) در مقایسه (۰/۵۷±۰/۱۸) P<.001

یافته‌ها: نتیجه گیری: با توجه به رفتار خونی بافت چربی احشایی بی وردی پورت و بر اساس نتایج این مطالعه، بالا بر امر سطح سرمی ویسفافین در سیستم پورت نسبت به وردی محیطی نشان می‌دهد. که بافت چربی احشایی ممکن است به ویسفافین در آن اثری در مورد بررسی قرار نگرفته بود. مطالعات in vivo بیشتری جهت روشن شدن نقش ویسفافین در شرایط پاتولوژیک ناشی از چاقی مورد نیاز است.

واژگان کلیدی: چاقی، ویسفافین، آدیپوکین، سیستم وریدی پورت

 Hosseinzadeh.MD.PH.D@gmail.com
مقدمه
امراذی شیوع جدایی و اضافه وزن و شرایط پاتولوژیک مرتب با آن در جهان امروز بسیار ناچیز به انجام مطالعات بر روی انتخاب چربی افراد بی‌پنسمانی [12، 13] دیده‌گاه اخیر نسبت به انتخاب چربی آن را به عنوان یک انتخاب شرطی فعال می‌شناسد که سیگنال‌هایی را در جهت تهیه اشکال‌های انسانی، منیسو، انرژی بهبود و ایمنی دریافت کرده و اراضی می‌کند [14]. انتخاب چربی به عنوان یک انتخاب انكورینی، موانعی را ترکش می‌کند که به این انتخاب، اپیدمیک‌های فعلی شوید. اپیدمیک‌های و سایر پاتولوژیک‌های مطرح شده از انتخاب چربی، در ایجاد مقاومت به انقلاب و سایر عوارض انسانی از جمله نقص در دنیه، این عوامل و دیگر عوامل پیش از نشانه‌بندی از ترافیک غرس، به عنوان یکی از محیطی که گیرند آنها را راه دارند رفته و همین ابزار ادغام شده را آورده است [14].

روش‌ها

مطالعه حاضر یک مطالعه متغیری (Cross-sectional) با باند (BMI) ≥ 35 kg/m² که بر روی ۶۶ بانو در لاله دندوکش در جدایی و انرژی طول و رشد بانو انتخاب شد، در تاریخ ۱۳۸۸ و (۱۳۸۹ به طول انتخاب شد. انتخاب شد، در این بانو انتخاب شده است. با عواملی توصیه‌ای که تفاوت پارامتری آن بر بانو چربی انتخابی از طریق اثر لمیوزوم و پروادیپولیزیک ناشی باشد و عوامل دیگر با تغذیه وزن و ویسکالن (pro-adipogenic) با در سه سلول پری اسیدکوپیت (pre-adipocyte) تبدیل آنها به فرم بلاغ اپیدمیکی (adipocyte) می‌شود.

معیارهای عدم ورود به مطالعه شامل سابقه ابتلا به بیماری‌ها، ساکن‌سازی سینتیومالابوریوس، عمل‌کردن‌کل، بارداری، قندزی، سابقه انگیزش‌های میکروکارد، طی شش ماه اختیار، چاقی ناشی از اختلالات انكورینی و تومور‌های بدخیم بودن.
روز جراحی پس از ۱۲-۱۰ ساعت ناشتا جراحی شد.

نمونه‌گیری از سیستم پورت به میزان ۳ سی سی توسط جراح و دو سی سی از سیستم ویسکوزی و میکروت نگهداری گرفت. نمونه‌ها در لوله‌های اسید و واش ریخته شد و سپس سریع‌تر مانده‌رفت و به روش معینی ثبت شدند و به دمای ۱۰-۱۸ درجه سانتی‌گراد در زمان‌کش داده شدند و به آرامی به دست آمده بر روی آنها انجم داده گردید. در نمونه‌های حلال LDL و HDL و در سیستم ویسکوزی، الیپروپترین با دانسته‌پذیری (۶-۱۲ ده‌ها ساعت) و الیپروپترین با دانسته‌پذیری (۶-۱۲ ده‌ها ساعت) در کلسترول، تام، گلکترین و السولان اندازه‌گیری شد. ویسقبین در سیستم پورت و میکروت کارگری گردد.

سطح گلکترین، کلسترول تام، الیپریپترین و روشن‌پوشی نمایش آنتی‌اکسیدان‌های حلال HDL و VLDL و شیمی‌بیولوژی نشان می‌دهد در سطح DRG انیدیول را با استفاده از RIA و نیز میزان انسولین با استفاده از Homeostasis Model Assessment و با HOMEOMIR (پرمتری توسط ELISA و در کلسترول، تام، الیپریپترین و روشن‌پوشی نمایش آنتی‌اکسیدان‌های حلال HDL و VLDL و شیمی‌بیولوژی نشان می‌دهد در سطح DRG انیدیول را با استفاده از RIA و نیز میزان انسولین با استفاده از Homeostasis Model Assessment و با HOMEOMIR (پرمتری توسط ELISA و در کلسترول، تام، الیپریپترین و روشن‌پوشی نمایش آنتی‌اکسیدان‌های حلال HDL و VLDL و شیمی‌بیولوژی نشان می‌دهد در سطح DRG انیدیول را با استفاده از RIA و نیز میزان انسولین با استفاده از Homeostasis Model Assessment و با HOMEOMIR (پرمتری توسط ELISA و در کلسترول، تام، الیپریپترین و روشن‌پوشی نمایش آنتی‌اکسیدان‌های حلال HDL و VLDL و شیمی‌بیولوژی نشان می‌دهد در سطح DRG انیدیول را با استفاده از RIA و نیز میزان انسولین با استفاده از Homeostasis Model Assessment و با HOMEOMIR (پرمتری توسط ELISA و در کلسترول، تام، الیپریپترین و روشن‌پوشی نمایش آنتی‌اکسیدان‌های حلال HDL و VLDL و شیمی‌بیولوژی نشان می‌دهد در سطح DRG انیدیول را با استفاده از RIA و نیز میزان انسولین با استفاده از Homeostasis Model Assessment و با HOMEOMIR (پرمتری توسط ELISA و در کلسترول، تام، الیپریپترین و روشن‌پوشی نمایش آنتی‌اکسیدان‌های حلال HDL و VLDL و شیمی‌بیولوژی نشان می‌دهد در سطح DRG انیدیول را با استفاده از RIA و نیز میزان انسولین با استفاده از Homeostasis Model Assessment و با HOMEOMIR (پرمتری توسط ELISA و در کلسترول، تام، الیپریپترین و روشن‌پوشی نمایش آنتی‌اکسیدان‌های حلال HDL و VLDL و شیمی‌بیولوژی نشان می‌دهد در سطح DRG انیدیول را با استفاده از RIA و نیز میزان انسولین با استفاده از Homeostasis Model Assessment و با HOMEOMIR (پرمتری توسط ELISA و در کلسترول، تام، الیپریپترین و روشن‌پوشی نمایش آنتی‌اکسیدان‌های حلال HDL و VLDL و شیمی‌بیولوژی نشان می‌دهد در سطح DRG انیدیول را با استفاده از RIA و نیز میزان انسولین با استفاده از Homeostasis Model Assessment و با HOMEOMIR (پرمتری توسط ELISA و در کلسترول، تام، الیپریپترین و روشن‌پوشی نمایش آنتی‌اکسیدان‌های حلال HDL و VLDL و شیمی‌بیولوژی نشان می‌دهد در سطح DRG انیدیول را با استفاده از RIA و نیز میزان انسولین با استفاده از Homeostasis Model Assessment و با HOMEOMIR (پرمتری توسط ELISA و در کلسترول، تام، الیپریپترین و روشن‌پوشی نمایش آنتی‌اکسیدان‌های حلال HDL و VLDL و شیمی‌بیولوژی نشان می‌دهد در سطح DRG انیدیول را با استفاده از RIA و نیز میزان انسولین با استفاده از Homeostasis Model Assessment و با HOMEOMIR (پرمتری توسط ELISA و در کلسترول، تام، الیپریپترین و روشن‌پوشی نمایش آنتی‌اکسیدان‌های حلال HDL و VLDL و شیمی‌بیولوژی نشان می‌دهد در سطح DRG انیدیول را با استفاده از RIA و نیز میزان انسولین با استفاده از Homeostasis Model Assessment و با HOMEOMIR (پرمتری توسط ELISA و در کلسترول، تام، الیپریپترین و روشن‌پوشی نمایش آنتی‌اکسیدان‌های حلال HDL و VLDL و شیمی‌بیولوژی نشان می‌دهد در سطح DRG انیدیول را با استفاده از RIA و نیز میزان انسولین با استفاده از Homeostasis Model Assessment و با HOMEOMIR (پرمتری توسط ELISA و در کلسترول، تام، الیپریپترین و روشن‌پوشی نمایش آنتی‌اکسیدان‌های حلال HDL و VLDL و شیمی‌بیولوژی نشان می‌دهد در سطح DRG انیدیول را با استفاده از RIA و نیز میزان انسولین با استفاده از Homeostasis Model Assessment و با HOMEOMIR (پرمتری T
جدول ۱- میانگین سن‌نامیه توده بدنی دور کلسترول نام سرم.

<table>
<thead>
<tr>
<th>سن (سال)</th>
<th>نامیه توده بدنی (Kg/m²)</th>
<th>دور کم (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰/۲۶</td>
<td>۲۵/۳ ± ۵/۶</td>
<td>۱۲/۶</td>
</tr>
<tr>
<td>۰/۸</td>
<td>۱۸/۲ ± ۲/۷</td>
<td>۱۸/۳ ± ۲/۷</td>
</tr>
<tr>
<td>۰/۸۷</td>
<td>۱۰/۵ ± ۲/۴</td>
<td>۱۰/۵ ± ۲/۴</td>
</tr>
<tr>
<td>۰/۱۷</td>
<td>۸/۰ ± ۲/۰</td>
<td>۸/۰ ± ۲/۰</td>
</tr>
<tr>
<td>۰/۸</td>
<td>۶/۰ ± ۲/۰</td>
<td>۶/۰ ± ۲/۰</td>
</tr>
<tr>
<td>۰/۱۳</td>
<td>۴/۰ ± ۲/۰</td>
<td>۴/۰ ± ۲/۰</td>
</tr>
<tr>
<td>۰/۰۱</td>
<td>۲/۰ ± ۲/۰</td>
<td>۲/۰ ± ۲/۰</td>
</tr>
</tbody>
</table>

جدول ۲- همبستگی و سیستم سیستم و ریگ محیطی با متغیرهای کلسترول نام سرم.

<table>
<thead>
<tr>
<th>همبستگی</th>
<th>متغیرها</th>
</tr>
</thead>
<tbody>
<tr>
<td>کل زن مرد</td>
<td></td>
</tr>
<tr>
<td>نامیه توده بدنی (Kg/m²)</td>
<td>۰/۲۶</td>
</tr>
<tr>
<td>اندام دور کم (cm)</td>
<td>۰/۸</td>
</tr>
<tr>
<td>کلسترول نام (mg/dl)</td>
<td>۰/۸۷</td>
</tr>
<tr>
<td>تری کلسترول (mg/dl)</td>
<td>۰/۱۷</td>
</tr>
<tr>
<td>قند خون ناشتا (mg/dl)</td>
<td>۰/۸</td>
</tr>
<tr>
<td>انسولین (mg/dl)</td>
<td>۰/۱۳</td>
</tr>
<tr>
<td>HOMA</td>
<td>۰/۰۱</td>
</tr>
</tbody>
</table>

* نوع مطالعه: مقایسه
** تعادل بیماران: ۴۴ بیمار چاق مقیاس (۱۷ تقریباً و ۳۳ نفر)
*** کلیه مماری‌هایها با سرعت خاص می‌باشد: همانگی نشان داده شدند.
**** HDL = لیپید چربین‌های دانش‌پگیان HDL = لیپید چربین‌های بالایان هم‌نام نامیه مقادیر به انسولین. HOMA = همبستگی میان‌سیستمی. (P<۰/۰۵).
بحث

در این مطالعه بین سطح ویستافاتین سیستم بورت و وردی تفاوت معنی‌داری دیده شد. همان طور که ذکر شد تا به حال هیچ مطالعه‌ای به ورسی سطح ویستافاتین در سیستم بورت اراده چاقی نمیداشته است. بنابراین مطالعه حاضر نایب کردن که ترکیب ویستافاتین در بافت‌های تحتی بالین است و لذا این بافت منبع مهم ترکیب کننده این آدیپوکین محسوب می‌شود. از آنجا که ویستافاتین TNF-α، می‌شود [9] در تئوری می‌تواند در ایجاد بیماری‌های متابولیک ناشی از چاقی از جمله دیابت نوع 2 و بیماری‌های قلبی عروقی نقش داشته باشد.

مطالعه مشابهی در مورد سایر آدیپوکینها از جمله آدیپوکین رابطه آدیپوکین TNF-α، و لیپین انجام گرفته و مشخص شده که بافت‌های تحتی منبع مهم ترکیب IL-6 می‌باشد [10]. در مطالعه دیگری سطح سرمی کم‌ریز آدیپوکین

1- Chemerin
کلسترول است عمل نماید. با توجه به اینکه مهار پروتئین LDL از مصرف HDL را افزایش و سطح کاهش می‌دهد، یک سازگاری بین شیمیایی برای هم‌رسیدن کلسترول ممکن است از مجموعه این گزارش‌ها می‌توان نتیجه گرفت که ویسکانسین در درمان شاید به این BMI رابطه بین ویسکانسین ممکن است توجیه دیلی باشد که امر در یک محدوده مشخص و تقریباً می‌تواند از لحاظ تولالو BMI (BMI ≥ 25) می‌تواند این BMI در این مطالعه شاید به این BMI رابطه بین ویسکانسین ممکن است توجیه دیلی باشد که امر در یک محدوده مشخص و تقریباً می‌تواند از لحاظ تولالو BMI (BMI ≥ 25) می‌تواند این BMI در این مطالعه شاید به این BMI رابطه بین ویسکانسین ممکن است توجیه گرفته که ویسکانسین با تهیه موثر به داشته باشد. این مطالعه نشان داد که سطح سرمی ویسکانسین پورت به سپتوم ورید می‌کند. بالاخره است. این مطالعه برای اولین بار ترکیب ویسکانسین از پارتیشن چربی احیایی را در in vivo مورد بررسی قرار داد. بنابراین نتیجه می‌گیرد که ویسکانسین از پارتیشن چربی احیایی ممکن ترکیب شده و سطح سرمی ویسکانسین محسوب می‌شود.

در مجموع تالیف آن مطالعات نشان داد که سطح سرمی ویسکانسین پورت به سپتوم ورید می‌کند. بالاخره است. این مطالعه برای اولین بار ترکیب ویسکانسین از پارتیشن چربی احیایی را در in vivo مورد بررسی قرار داد. بنابراین نتیجه می‌گیرد که ویسکانسین از پارتیشن چربی احیایی ممکن ترکیب شده و سطح سرمی ویسکانسین محسوب می‌شود.

سپاسگزاری

این مطالعه تحت حمایت مالی دانشگاه علوم پزشکی تهران انجام گرفته است. نویسندگان این مقاله کمال قدردانی را از پرسنل محترم بیمارستان لاهدار دارند.

