تغییر لپیده‌ها، گلوکز و انسولین خون متصاد مصرف کلرید آلامینوم در موش‌های صحرایی

سیدرضا فاطمی طبیب‌یار، سمیه شیخ

چکیده

مقدمه: آلامینوم، سویمن عنصر فراوان پوسته زمین، ممکن است به روش‌های مختلفی وارد بدن شود. تخمین بیش از حد با

این عنصر شبیه به ماده‌ای که به‌طور طبیعی از بیماری‌ها ایجاد می‌شود. بنابراین مشکلات فراوان تاکید بر این عنصر، ممکن است

ورد آن به بدن بر هم‌مانشان لیپیدها در حد خون و مصرف گلوکز تأثیر گذاشته و از این طریق زمینه‌سازی دیابت و بیماری‌های

قابل عدالتی شود. لذا در این مطالعه آثار مصرف خوراکی آلامینوم بر شاخص‌های مذکور مطالعه فارغ گرفت.

روش‌ها: 18 موش صحرایی نر تازاد و فستی و سوییته سگه به سپاس تا ثبت شدند. از آب پیش‌بینی (آب پخته) آنها روزه به مدت 7

هفته مقادیر صفر، 100 و 200 میلی‌گرم از گلوکز و زنده، آلامینوم به شکل کلرید آلامینوم اضافه شد. مقادیر

تراکنش (ئیو) کلریدن تام (TC), (هDL -c), تری‌گلیسرید (TG), کلسترول نام (c) به آن‌ها اضافه گردید. پلاسما به روش‌های آنالیزیک انداده‌های گندم و انداده‌های HDL-c, و انسولین، بالا به روش معیار HOMA-IR

انجام گرفت. جهت تأیید مقامات انسولین شاخص محاسبه گردید.

یافته‌ها: مصرف آلامینوم سطح c را در بیمارانی آلامینوم 100 و 200 به صورت معنی‌داری کاهش (P<0.05) و

میزان انسولین و LDL-c به‌طور مزمن نسبی تأثیر گذاشت. Sطح گلوکز در بیمارانی آلامینوم 100 و 200 نسبت به غیرکنترل فاصله یافته.

متعاقب مصرف 200 میلی‌گرم آلامینوم میزان انسولین و HOMA-IR در حد معنی‌داری نسبت به دو گروه دیگر افزایش یافتند.

نتیجه‌گیری: نتایج تحقیق نشان داد قرار گرفتن در معرض آلامینوم ممکن است با تداخل در متابولیسم کبد، خون و لپیده، و

مقاومت به انسولین، زمینه ساز بروز دیابت نوع 2 و بیماری‌های قلبی عروقی باشد.

واژگان کلیدی: آلامینوم، لپیده، گلوکز، HOMA-IR

1. کروه علوم پایه، دانشکده داروسازی، دانشگاه شهید چمران اهواز
2. کروه فیزیولوژی، دانشکده شهید چمران اهواز
3. نشانه‌گر زاده‌دان: پژوهشگر بیماری‌زایی، دانشگاه پیام نور مرکز درمان و بلوچستان، کروه علوم تغذیه، تلفن: 91614417683، شماره: somaye.sheikh@gmail.com 054253876

تاریخ دریافت: 1391/05/26
تاریخ درخواست اصلاح: 1391/05/12
لیپیروتین‌ها و انسولین و گلگزی در نشیب و یک‌طرف
بیماری آترودماط و بیماری دیابت نیز دارند لذا
مطالعه حاضر در جهت پروسه اثر مصرف خوراکی
آلوپیرامین بر ضخامت مذکور و تأثیر نهایی آن بر
مقاومت انسولین اجرای آزمایش

روش‌ها
برای انجام این کار تحقیقاتی تعداد 18 از مسوی
صرحای نر بغل تازه و سیاه به وزنی 100-210 گرم از 
کتابی و پرورش حیوانات آزمایشگاهی دانشگاه
شاپور اهواز به شرط داده شدند. حیوانات تحت شرایط
32 ساعت روشی و 12 ساعت تاریکی و 6 ماه 
یک‌هک‌یاری شدند. علاوه بر این، حیوانات به صورت بلند شده از گازهای
خاراکه و دیکتره پارس تهیه گردید و حیوانات به
آب و غذا تغذیه داده شدند. بعدها به یک هفته
سازگاری، حیوانات به صورت تصادفی به سه گروه
تایی شمار گروههای کنترل 100 و آلوپیرام
100 نمونه یکسان شدند. نمونه کنترل گروههای به
هم نزدیکی بود. به آب آماده‌سازی (آب مصرفی
ارائه شده به اضافه
300 گرم سیستمی) گروههای فول تریپتی روزانه
مقاومت صرف (آب مصرفی آکریل آلوپیرام)
200 و
میلی‌گرم به ایزای هر کیلوگرم وزن بدن کارید آلوپیرام
هدف هفته اضافه شد. برای اینکه
آلوپیرام در مقادیر ذکر شده در این نظریات قبل از قرار گیرد
روزانه آب مصرفی 24 ساعت حیوانات اندام‌گیری
و با
نظر گرفتن مجموع وزن حیوانات موجود در هر قسم
(سی
میش صحرایی در هر قسم و در زیر مورد استفاده
در هر
گروه، مقدار کارید آلوپیرام مورد نیاز محاسبه و در آب
گرفته‌ها، تعداد آنتی‌هستامین‌های نیاز مورد نیاز وارد استفاده در هر
32 ساعت آنها حالت و در ایجاد حوادث قرار
گرفته، در پایان هفته هفت نهایی مقاومتی، وزن گروه‌ها
توسط ترازوی دیدی‌الاندازگیری شد.
بعد از اتمام دوره مسایل‌های صحرایی به مدت 8 ساعت
ناتسا نه داشت می‌شود. (فقط می‌توانستند از آب آماده‌سازی
استفاده کنند) و تحت به‌هم‌سازی عضیف توسط کاریزی
گرفته‌ها قابل صورت قرار گرفت. نمونه‌های خون در
لوله‌های حاوی 25 میکرولیتر به هدف درصد به مدت
EDTA مقادیره
یافته‌ها
همان‌گونه که در نمونه 1 مشارکت آن‌ها همت گرفته و به صورت میانگین ± انحراف معیار باقی‌مانده، مقدار مینیموم روش انسولین گلاکتازیت برای اندازه‌گیری - HDL-c و تری-گلیسرید در مصرف تری-گلیسرید. ضرب معیار تغییرات درون گروه‌ی برخی از میانگین میزان حساسیت روش اندازه‌گیری به ترتیب به یکی از تری-گلیسرید تری-گلیسرید و تری-گلیسرید در سه‌روی تری-گلیسرید. برای اندازه‌گیری - HDL-c ایندیده LDL-c نسبتی افزایش 48% (میانگین ± انحراف معیار در ولد و HDL-c همچنین مقدار کلسیمی تا نیز در گروه LDL-c (نمونه‌های 100 با کاهش میزان حساسیت HOMA-IR) LDLC-c = TC - (HDL-c + LDL-c)

روش آمیز: نتایج حاصل از این مطالعه با استفاده از 1. Homeostasis model assessment

 terse 10 3000rpm شدند و مقدار گلیسرید Tc (TG). اندازه‌گیری HDL-c و تری-گلیسرید و LDL-c و SGTA معنی‌دار تغییرات درون گروه‌ی برخی از میانگین میزان حساسیت روش اندازه‌گیری به ترتیب به یکی از تری-گلیسرید تری-گلیسرید و تری-گلیسرید در سه‌روی تری-گلیسرید. برای اندازه‌گیری - HDL-c ایندیده LDL-c نسبتی افزایش 48% (میانگین ± انحراف معیار در ولد و HDL-c همچنین مقدار کلسیمی تا نیز در گروه LDL-c (نمونه‌های 100 با کاهش میزان حساسیت HOMA-IR) LDLC-c = TC - (HDL-c + LDL-c)

روش آمیز: N SHDW. مقدار N میزان حساسیت روش اندازه‌گیری به ترتیب به یکی از تری-گلیسرید تری-گلیسرید و تری-گلیسرید در سه‌روی تری-گلیسرید. برای اندازه‌گیری - HDL-c ایندیده LDL-c نسبتی افزایش 48% (میانگین ± انحراف معیار در ولد و HDL-c همچنین مقدار کلسیمی تا N

1 Homeostasis model assessment

1 Homeostasis model assessment
نمودار 1- مقایسه میانگین (X خطای معیار) سطوح یک‌سانی (تری‌کلسترول تام) TC (تری‌کلسترول تام) TC، LDL-c و VLDL-c. متوسط هفت مقدار مصرف آلومینیوم در مقدار ۲۰۰ و ۱۰۰ میلی‌گرم بی‌کیلوکرم وزن بدن در موش‌ها صحرایی

نمودار 3- میانگین (X خطای معیار) کلوزک و متوسط هفت مقدار انسولین در مقدار ۲۰۰ و ۱۰۰ میلی‌گرم بی‌کیلوکرم وزن بدن موش‌های صحرایی

نمودار 4- مقایسه میانگین (X خطای معیار) سطوح یک‌سانی (تری‌کلسترول تام) TC، LDL-c و VLDL-c. متوسط هفت مقدار مصرف آلومینیوم در مقدار ۲۰۰ و ۱۰۰ میلی‌گرم بی‌کیلوکرم وزن بدن موش‌های صحرایی

نمودار 5- مقایسه میانگین (X خطای معیار) سطوح یک‌سانی (تری‌کلسترول تام) TC، LDL-c و VLDL-c. متوسط هفت مقدار مصرف آلومینیوم در مقدار ۲۰۰ و ۱۰۰ میلی‌گرم بی‌کیلوکرم وزن بدن موش‌های صحرایی

نمودار 6- مقایسه میانگین (X خطای معیار) سطوح یک‌سانی (تری‌کلسترول تام) TC، LDL-c و VLDL-c. متوسط هفت مقدار مصرف آلومینیوم در مقدار ۲۰۰ و ۱۰۰ میلی‌گرم بی‌کیلوکرم وزن بدن موش‌های صحرایی

سلسیو و مکارون تغییر لبیدهای کلوزک و انسولین خون متعاقب مصرف آلومینیوم در موش‌های صحرایی

TUKEY و تست ONE-WAYANOVA
بحث

در مطالعه حاضر فرار گرفتن در معرض آلومیونیوم با دوزهای c 100 mg/kg و LDL-c افزایش نسبی c شد (نموندار ۱). که نشان دهندر بر هم خوردن تعداد لپیدی است. این تغییرات لپیدی ممکن است ناشی از تنش اکسیداسیون آلومیونیوم بر لپیدها و ترکیبات آنها باشد [16-14]. آلومیونیوم یک پرواکسیدانت است و به طور مستقیم منجر به تولید رادیکالهای آزاد و استرس اکسیداسیون می‌شود [17]. همچنین نشان داده شده...
شیعه و مکاران تغییر لیبیدوم. کلوک و انسولین خون متعاقب مصرف کردن آلومنیوم در موش‌های صحرایی

جوان به مدت 90 روز باعث کاهش وزن مغز و وزن
باید. این بنا بوده در میان در خورش داشت شاخص نظری گرایش‌های تیرویسم، کلسسترول و LDL و

بسته به محلاتی که دارای تغییر مایع‌های است

فقط خطر بروز بیماری‌های

طقس غیر طبیعی لیبیدوم

طرح و بار بالای دالت درد [34]. با بار داده به نظر مسیر تاثیر مایع‌های کلسسترول و انژام

کاهش قلبی عروقی مؤثرند [17]. برخی از عناصر دیگر نیز سبیب تغییر در سطح لیبیدوم برنامه‌ای شیوند (2020).

در مطالعه حاضر کلینیک آلومینیوم سپس افزایش گلکوک خون

مدیریت انسولین و تخمیری میزان آلفا-گلکوک انسولین در همانه

در مطالعات HOMA-IR-MODAF (تنواد 2 تا 3). شاخص ایمپلنتیک خطر بیماری آن دیابت، لنگین می‌دهد و

نتیجه آزمایش آن بررسی سطح آلومینیوم گلکوک و انسولین

می‌باشد و تعداد بین آزاد شدن گلکوک از کبد و ترشح

انسولین را با استفاده از سطح گلکوک و انسولین پلاسمایی

از زبان و نشان داده شده است [42]. مقاومت انسولین زمانی ساز دیابت نوع 2

می‌باشد و در طی سال‌های متعاقب سبب بررور این بیماری

می‌باشد [33].

در مطالعات که توسط Haglin و همکاران [24] صورت

گرفت تجویز آلومینیوم هیدروفوسائید به مدت 15 هفته به

خواهد. مکاران آلومینیوم کلیک را در عضو اسکلتی تغییر داد.

که با توجه به حجم بات پستان اسکلتی در جایی، این

نوع اختلال در عضله اسکلتی می‌تواند سبب افزایش

غلطی گلکوک در پلسمان شود. مصرف دراز مدت آلومینیوم

می‌تواند مایع‌های کلسسترول را ختم کند. مصرف غذایی

نحوه آلومینیوم به صورت وابسته به دوز و زمان ممکن

است غلطی گلکوک مسرع بعد از تست نشت حلم الگوی و

همچنین غلطی گلکوک ناشناپ افزایش دهد [25]. این

افزایش میزان گلکوک می‌تواند به دلیل مقاومت در برابر

انسولین [26]. با کاهش ترشح انسولین [77] و یا هر دو

سخت‌پوشی باین گرایش‌های عضوی مصرف آلومینیوم در موش‌های صحرایی

لزوم به ذکر است که بر اساس یافته‌های بیشتر

می‌توان در افزایش خطر بروز بیماری‌های

گرفت، مصرف آلومینیوم باعث افزایش کلسسترول و

لیبیدوم نام گلکوک هست [16]. سطح غیر طبیعی لیبیدوم

به طور قابل ملاحظه‌ای در افزایش خطر بروز بیماری‌های

قلبی عروقی مؤثرند [17]. برخی از عناصر دیگر نیز سبیب

تغییر در سطح لیبیدوم برنامه‌ای شیوند (2020).

در مطالعه حاضر کلینیک آلومینیوم سپس افزایش گلکوک خون

شده است و میزان انسولین و مصرف 200 کالری آلومینیوم افزایش معنی‌دار داشته

است (تنواد 2 تا 3). شاخص ایمپلنتیک خطر بیماری آن دیابت، لنگین می‌دهد و

نتیجه آزمایش آن بررسی سطح آلومینیوم گلکوک و انسولین

می‌باشد و تعداد بین آزاد شدن گلکوک از کبد و ترشح

انسولین را با استفاده از سطح گلکوک و انسولین پلاسمایی

از زبان و نشان داده شده است [42]. مقاومت انسولین زمانی ساز دیابت نوع 2

می‌باشد و در طی سال‌های متعاقب سبب بررور این بیماری

می‌باشد [33].

سخت‌پوشی باین گرایش‌های عضوی مصرف آلومینیوم در موش‌های صحرایی

لزوم به ذکر است که بر اساس یافته‌های بیشتر

می‌توان در افزایش خطر بروز بیماری‌های

گرفت، مصرف آلومینیوم باعث افزایش کلسسترول و

لیبیدوم نام گلکوک هست [16]. سطح غیر طبیعی لیبیدوم

به طور قابل ملاحظه‌ای در افزایش خطر بروز بیماری‌های

قلبی عروقی مؤثرند [17]. برخی از عناصر دیگر نیز سبیب

تغییر در سطح لیبیدوم برنامه‌ای شیوند (2020).

در مطالعه حاضر کلینیک آلومینیوم سپس افزایش گلکوک خون

شده است و میزان انسولین و مصرف 200 کالری آلومینیوم افزایش معنی‌دار داشته

است (تنواد 2 تا 3). شاخص ایمپلنتیک خطر بیماری آن دیابت، لنگین می‌دهد و

نتیجه آزمایش آن بررسی سطح آلومینیوم گلکوک و انسولین

می‌باشد و تعداد بین آزاد شدن گلکوک از کبد و ترشح

انسولین را با استفاده از سطح گلکوک و انسولین پلاسمایی

از زبان و نشان داده شده است [42]. مقاومت انسولین زمانی ساز دیابت نوع 2

می‌باشد و در طی سال‌های متعاقب سبب بررور این بیماری

می‌باشد [33].
مجله دیابت و لیپید ایران و ماهنامه مهر-آبان 1391; دوره 12 (شماره 1)

سپاسگزاری

هری به این کار پژوهش و توصیف دانشگاه شهید صمرای اهواز 
تائیم شده است و از گروه فیزیولوژی دانشکده دامپزشکی
دانشگاه شهید صمرای اهواز جهت همکاری در طی اجرای
پژوهش، کمال نقدی و تشکر به عمل می‌آید.


