تداخلات فارماکوکینتیک بین آنترووستاتین و پوپکینازون در بیماران مبتلا به دیابت نوع 2

همت اله بابایی، فریقده، نلسی، منصبه طبی، وراشی، عقلی، باتری لاریجانی

چکیده

مقدمه: بیماران مبتلا به دیابت نوع 2، جهت کنترل هیپرگلیسمی و دیس لپیدمی داروی های متعددی مصرف می‌کنند. این مطالعه جهت ارزیابی تداخلات فارماکوکینتیک بین آنترووستاتین و پوپکینازون انجام شد تا مشخص گردد آیا اضافه نمودن پوپکینازون تغییری در پارامترهای فارماکوکینتیک آنترووستاتین ایجاد خواهد کرد یا نه.

روش‌ها: در این مطالعه 40 بیمار مبتلا به دیابت نوع 2 تحت برسی قرار گرفتند. بیماران تحت درمان با آنترووستاتین 40 میلی گرم در روز و پوپکینازون 30 میلی گرم در روز داروی نمونه‌های خونی سریال جهت اندازه‌گیری غلظت پلاسماتیک آنترووستاتین از آنان گرفته شد. یک ماه بعد از اضافه نمودن پوپکینازون، ترکیبی از پارامترهای فارماکوکینتیک آنترووستاتین قبل و بعد از اضافه کردن پوپکینازون به هم مقایسه گردید. اندازه‌گیری غلظت پلاسماتیک آنترووستاتین به روش الکتروشیمی ولتاژ متری بالاسی تفاصل (نشانجی) انجام شد.

یافته‌ها: پوپکینازون میانگین (AUCp(0-α) و میانگین (Cmax و آنترووستاتین را % (P=0.05) تأثیر مثبتی در سرعت و حد قله ای تأثیر داشت (P=0.03، 3/4 ساعت، 0.03، 3/20).

نتیجه‌گیری: پوپکینازون باعث کاهش در غلظت پلاسماتیک آنترووستاتین گردید. سازوکار غلظت پلاسماتیک کاهش یافته آنترووستاتین، می‌تواند به عنوان تسریع متابولیسم آن باعث کاهش CYP3A4 و توسط پوپکینازون باشد. این کاهش غلظت کم بوده و نتایجی داشته که مقابل دو آنترووستاتین در صورت تجویز همزمان با پوپکینازون نمی‌باشد.

واژگان کلیدی: دیابت نوع 2، فارماکوکینتیک، آنترووستاتین، پوپکینازون، AUC، Cmax، Tmax

1- مرکز تحقیقات دیابت/پژوهشکده علوم شکمی و متابولیسم، دانشگاه علوم پزشکی تهران
2- مرکز علل الکتروشیمی، دانشگاه طبی، دانشگاه تهران

*متن‌شناسی: تهران، خیابان کارگر شمالی، بیمارستان دکتر شریعتی، طبقه چهارم، پژوهشکده علوم شکمی و متابولیسم، دانشگاه علوم پزشکی

emrc@tums.ac.ir
مقدمه

آنالیزهای آماری

تعداد اطلاعات با استفاده از نرم افزار SPSS و برای آنالیز 
ANOVA دستور SPSS می‌باشد. برای آنالیز تجزیه و تحلیل با استفاده از نرم افزار SPSS موجود می‌باشد و تحلیل نمونه‌ها به کمک

نظر می‌رسد این نرم‌افزار باید تجزیه و تحلیل کارایی دارد و

1- Therapeutic range
جدول 1- ویژگی‌های دموکراتیک و بیوشیمیایی افراد شرکت کننده در مطالعه

<table>
<thead>
<tr>
<th>متغیر</th>
<th>میانگین ± انحراف معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>سن (سال)</td>
<td>25/8±3/9</td>
</tr>
<tr>
<td>نمایه توده بدنی (Kg/m²)</td>
<td>24/5±0/88</td>
</tr>
<tr>
<td>مدت تشخیص دیابت (سال)</td>
<td>17±2/7</td>
</tr>
<tr>
<td>فشار خون سیستولیک (mmHg)</td>
<td>130/6±7</td>
</tr>
<tr>
<td>فشار خون دیاستولیک (mmHg)</td>
<td>83±2/41</td>
</tr>
<tr>
<td>(mg/dl) FBS</td>
<td>184/3±8/4</td>
</tr>
<tr>
<td>(mg/dl) کراتین</td>
<td>0/7±0/8</td>
</tr>
<tr>
<td>(mg/dl) تری گلسرید</td>
<td>25/6±3/56</td>
</tr>
<tr>
<td>(mg/dl) HbA1c</td>
<td>7/8±1/17</td>
</tr>
<tr>
<td>(mg/dl) TC</td>
<td>21/8±2/76</td>
</tr>
<tr>
<td>(mg/dl) HDL-C</td>
<td>33/8±5/39</td>
</tr>
<tr>
<td>(mg/dl) LDL-C</td>
<td>13/4±7/61</td>
</tr>
<tr>
<td>(U/L) ALT</td>
<td>21/9±3/28</td>
</tr>
</tbody>
</table>

افراد شرکت کننده در مطالعه: 100 نفر مبتلا دیابت نوع 2

جدول 2- پارامترهای فارماکوكینتیک آتوروستاتین

<table>
<thead>
<tr>
<th>درمان</th>
<th>Cmax [ng-eq/ml]</th>
<th>Tmax [h]</th>
<th>AUC0-4 [ng-eq.h/ml]</th>
</tr>
</thead>
<tbody>
<tr>
<td>آتوروستاتین</td>
<td>2/43 ± 2/0</td>
<td>10/3</td>
<td>271/1/10 ± 1/3/3</td>
</tr>
<tr>
<td>آتوروستاتین + پیوکلیتازون</td>
<td>4/9 ± 0/9</td>
<td>10/3</td>
<td>254/4/22 ± 7/6/6</td>
</tr>
</tbody>
</table>

نتایج اطلاعات

شکل 1- فلخته‌های پلاسمایی آتوروستاتین در ساعت‌های 0، 1 و 2 قبل و بعد از مصرف پیوکلیتازون
بحث

بیماران مبتلا به دیابت نوع ۲ داروهای متعددی نشان داده که کنترل هپرگلیکمی و دیس لیپیدمی مصرف می کنند. تداخلات دارویی ممکن است به این دلیل ایجاد شود و این تداخلات می تواند در سطوح مختلف چربی، توزیع، امتصاص، حذف و حفر دارو باشد. همین اتفاق از لحاظ تیل به رژیم های دارویی مطلوب در اهمیت است.

در این مطالعه، تداخلات فارماکوکینهتیکی آنزیم CYP3A4 و CYP2C8 در بهبود و توسط سیتوکروم‌های PXR و PPAR افتاده می شود [16]. این اثر در بین افراد بهبودی سنجش گردید که CHF افزایش کل قلب به برابر نموداده و یپگلیتازون می‌شود. موارد سیتوکروم‌های PXR و PPAR افزایش کل قلب به برابر نموداده و یپگلیتازون می‌شود. 

CYP3A4 و CYP2C8 بهبود و توسط سیتوکروم‌های PXR و PPAR افزایش کل قلب به برابر نموداده و یپگلیتازون می‌شود. 

CYP3A4 و CYP2C8 بهبود و توسط سیتوکروم‌های PXR و PPAR افزایش کل قلب به برابر نموداده و یپگلیتازون می‌شود.

CYP3A4 و CYP2C8 بهبود و توسط سیتوکروم‌های PXR و PPAR افزایش کل قلب به برابر نموداده و یپگلیتازون می‌شود.


