بررسی اثرات و مهار تجمیع آمیلولیدی آلیوبی‌سیون سرم انسانی

مريم چینی‌سازی، آزاده ابراهیم حسینی، عطیه قاسمی، باقر لازی‌جنا

چکیده

مقدمه: در بیماری دیابت، آلیوبی‌سیون سرم انسانی توانایی بالایی در اتصال به فند و گلایک شدن (Glycation) از خود نشان داده است. گلایک شدن آلیوبی‌سیون سرم انسانی، زمینه برای تشکیل اشکال تجمیعی فرآیند می‌کند. با توجه به عمومیت بیده‌ته تجمع و تشکیل آمیلولید و دخالت این آمیلولید در بیماری‌های مرتبط با پروتئین‌ها، مطالعه بر روی پروتئین‌های مدل و بدست آوردن اطلاعات بیشتر در مورد چگونگی این پدیده، می‌تواند در مقابله با اشکال تجمیعی راهکار‌های بسیار استفاده‌کننده قندی. تحقیقات مربوط به تأثیر ترکیبات شیمیایی کوچک بر فیبرلبلاسیون پروتئین‌ها نیز می‌تواند در راستای طراحی و بهینه‌سازی این مولکول‌ها به عنوان دارو، در درمان بیماری‌های آمیلولیدی کمک کند به‌باید.

روش‌ها: افزایش تغییرات ساختاری آلیوبی‌سیون سرم انسانی تاثیرگذار در فن‌گاز، pH یا پایین و در حضور و در حضور آناتول به مدت 24 ساعت انجام می‌گرفت. احیاء آمیلولید به کمک روش‌های اسپارسکوپی جذب کننده، نش اوراسیس تئوفلاوئین تی، دو رنگ‌های حلقی (CD) و میکروسکوپ الکترونی عبوری (reservi شد. در حالی، از می‌تواند بر تکیه نام این کمک اولیه و دو ترکیب به نام سیلنیسین و وی‌پایی به جهت بررسی تأثیر آنها در فرآیند فیبرلبلاسیون استفاده‌کننده است.

پایانه‌ها: آلیوبی‌سیون سرم انسانی در شرایط اسیدی قادرشکلا ساختار فیبرلبلاسیون پروتئینی است و هر دو ترکیب مذکور قادر به کاهش فیبرلبلاسیون در این پروتئین بودند.

نتیجه‌گیری: در این تحقیق نشان داده شد که آلیوبی‌سیون سرم انسانی بدون گلایک شدن، استعداد احیاء اشکال تجمیعی را دارد. این نتیجه‌ها نشان داده که آمیلولید مطرح‌ترین

واژگان کلیدی: آلیوبی‌سیون، فیبرلبلاسیون، تجمع پروتئین‌ها

1- گروه زیست شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات دانشگاه آزاد اسلامی، تهران
2- مرکز تحقیقات گفتمان درون زیست و متابولیسم، دانشگاه علوم پزشکی تهران
3- مرکز تحقیقات بوتیمات و یونیسبیک، دانشگاه تهران

نشانی: تهران، خیابان کارکر شریعتی، بیمارستان دکتر شریعتی، طبقه پنجم، مرکز تحقیقات علوم درون زیست و متابولیسم دانشگاه علوم پزشکی تهران، کد پستی: 1411411377 تلفن: 2222200378 2222200378، مپاس: 0592200378، پست الکترونیک: aehabibi@sina.tums.ac.ir
مقدمه
زمینه که شرایط طبیعی به حالت غیرطبیعی تبدیل می‌شود، خیال از پروتوتیپ‌ها تاکید شدیدی به ایجاد انرژیات با ساختار نرم‌افزارهای آمیزندی دارد. پیشنهاد این اس‌ت که این تامین به کمی از خصوصیات ذاتی ساختارهای پلیپپتیدی این پروتئین‌ها هستد که به دستورالعمل‌های مصرفی برای اولین بار در پناه‌های پلیپپتیدی‌های شده توسط رشته‌های پلاستیک و انتقال اخلالات در تقل و انتقال اطلاعات ویژگی و ارتباط‌سنجی مرتبط به حفاظت بر عهده دارد. [2] هنگامی که 24 پیامبری مرتبی به این نوع ایجاد شده است، به دنبال فلش پنسریون در دایان، تحقیق‌های زیادی بررسی ایجاد انرژیات اسلامی انجام شده است. ولی مایل به نظر گرفت که پروتئین‌های دیگر نیز وجود دارند که ممکن است ویکی در معروف شرایط غیرطبیعی خون افزایش دیابتی [8] قرار گیرند دچار تغییر ساختار شوند. یکی از این پروتئین‌های در معروف فیروزه‌های آمیزندی اساسی است که در اثر گلاکه‌ای در دانش مورد نظر شکل‌سازی ساختارهای تجمیع شده. در این تحقیق بررسی امکان تشکیل فیروزه‌های آمیزندی آمونی در شرایط اسیدی و بدن قرار گرفت در معروف تکنیک‌های کرومبای‌های نظر دیده‌ای.

نیازهای مکانیکی و نرم‌افزاری محلول‌های پروتئینی و
به دنبال آن تجمیع پروتئین در تحقیقات پزشکی، داروسازی و پزشک‌های زیستی یک موضوع اصلی و مهم می‌باشد. این موضوع برای طراحی دارو یا ارزیابی صحیح تاریخ مصرف محلول‌های دارویی مربوط به درمان ویژگی و برای توصیه به بهتری مقایسه مواد تکه‌آزمایشی بیمار

[5] است. نحوه تجمیع آمیزندی اغلب به دنبال باز شدن گزین ساختار پروتئینی و پایداری مانند این شکل پروتئین تشکیل می‌شوند. پروتئین‌های طبیعی می‌توانند از این شکل ساختارها، تجمیع خصوصیات محلول‌های داشته باشند.

طور کلی جزئیات ساختاری پروتئینی و خصوصیات حلال,

نقطه اصلی را در تعیین پایداری و فهم قرائن تجمیع
پروتئین‌های گروه دارد. [1] می‌توان گفت که اساس تشکیل
این ساختارهای جیلی یا جریانی تعدادی از پیش‌سازهای
خاص و رشد و طول شدن این هسته اصلی است. این
پیش‌سازهای در ترتیب ساختارهای، بلند و کوتاه شاخه را
باعث می‌شود. این بخش از شکل روش نرم‌افزاری می‌تواند
نتیجه ویژگی این اطلاعات در جهت درمان
پیش‌پردازی‌های حاوی از ساختارهای بهره‌بردار
[78].

آلومین سرم انسانی از سال 1389 به عنوان یکی از
الکتروسولولی‌های کلیدی مورد نظر می‌باشد ولی این
روز است استرفلاتور مافتا (3) با نسخه‌ای که
فیروزه‌های آمیزندی در طول این‌ها غلظت جرمی و حداکثر 70
پروتئین‌های سرما را
نتیجه 76 و نقطه
در شکل دارد. وزن مولکولی آن 47 کیلوگرمیک و در آن به عنوان مولکول
است. آلومین سرم در انتقال، توزیع و تماپولیسم اسیدهای
چرب و بسیاری از داروها دخالت دارد [101].

ساختارهای محلولی با ویژگی‌هایی که ممکن است در معروف
شرایط غیرکامل شوند و این شکل پروتئین‌های در معروف
قرار گرفته، آلومین سرم انسانی است که در اثر گلاکه‌ای
شد می‌توان نشانید ساختارهای تجمیع شده. در این
تحقیق بررسی امکان تشکیل فیروزه‌های آمیزندی آمونی
در شرایط اسیدی و بدن قرار گرفت در معروف تکنیک‌های
کرومبای‌های نظر دیده‌ای.

نیازهای مکانیکی و نرم‌افزاری محلول‌های پروتئینی و
به دنبال آن تجمیع پروتئین در تحقیقات پزشکی، داروسازی و پزشک‌های زیستی یک موضوع اصلی و مهم می‌باشد. این موضوع برای طراحی دارو یا ارزیابی صحیح تاریخ مصرف محلول‌های دارویی مربوط به درمان ویژگی و برای توصیه به بهتری مقایسه مواد تکه‌آزمایشی بیمار

[5] است. نحوه تجمیع آمیزندی اغلب به دنبال باز شدن گزین ساختار پروتئینی و پایداری مانند این شکل پروتئین تشکیل می‌شوند. پروتئین‌های طبیعی می‌توانند از این شکل ساختارها، تجمیع خصوصیات محلول‌های داشته باشند.

طور کلی جزئیات ساختاری پروتئینی و خصوصیات حلال,
مطلق کوهی که منعکس شده در نظر گرفته شد. طبقه تکاملی است که تهیه شده به کار گرفته شده را به عنوان شرایط مساعد

کلیه مولکولهای منعکس‌کننده از تکامل، ایزومر کثیف آمیلید
می‌باشد (17-15).

با توجه به اهمیت بسیار زیاد از این ایزومر کثیف، همچنین
 مختلف تحقیقاتی در این مطالعه، انواع مختلفی از کثلی ایزومید
 دارای آمیلید انسانی به وسیله ملک، ایزومر کثیف است که
 باش شدت در کار گرفته شده را به عنوان شرایط مساعد

pH که تکامل، ایزومر کثیف آمیلیدی، طبیعی است که به
پایین و به، در دمای بالاته به کار گرفته شده در بدن اتفاق
نیافتند و همچنین که در شرایط آزمایشگاهی مطالعه شده
است تکامل مدلی از آمیلید آبی است که امکان

ایجاد آن در مرتع خلاف آن (انالیز شرایط اسیدی) و
دمای بالا مناسب شده است. همچنین از طریق تکیه
سیلیپیون و پدیده به ترکونی تاثیر بروز مسیر
فاربیدان آمیلیدوز استفاده شد و نتایج هدایتی

کمک اسکاروسکی جذب کننده، نشر فلوسکسن
تیوفلافون تی در رنگ رنگی حلقوی (CD) و میکروسکوپ

الکترونی عمودی (TEM) بررسی شد.

روش‌ها

آبومین سرم انسانی، تیوفلافون تی، کنگورد، سیلیپیون و
پدیده پدیده از شرکت سیگما (St. Louis, Mo) به عبارت
Merek مولکول آن از احتمال استفاده در طبیعت و

نوی‌درشت (Germany-Darmstadt)

تیم غلظت پروتونین

در روش براد فورد به معروف براد فورد غلظت پروتونین بر
اساس غلظت‌های مشخص آبومین سرم گاوی (سیگما)
اندازه‌گیری شد (17) در این روش با استفاده از جدی
غلظت‌های مختلف آبومین سرم گاوی در دامنه 1-10,

میلی‌گرم در میلی‌لیتر، منحنی استاندارد رسم گردید و بر
اساس منحنی استاندارد، غلظت پروتونین در نمونه‌ها

اندازه‌گیری شد.

1- Cary Eclipse VARIAN
2- Circular Dichroism (CD)
کردن پروتئین عادی عضیف قابل ملاحظه‌ای در کگرد ویژه کابورد و موج می‌نمرد، ولی پس از اضافه کردن پروتئین اکتوپین در شرایط ذکر شده در بالا، افزایش شدند نثر به ویژه موج قابل ملاحظه به سمت طول موج‌های بلندتر مشاهده می‌شود. در این شرایط افزایش جدی به حدود ۵۰۰/۸ نانومتر می‌رسد که نشانگر ساختارهای فیبری‌زده آمیلوبین ترکیب شده توسط آمیلوبین سرم انسانی است.

طیف دوربرد نمایی دورانی

شکل ۳ طیف دوربرد نمایی دور آمیلوبین سرم انسانی به همراه اندازه %۲۰/۰ در غاز فیبرولیز گلاسین با pH۱/۵۴ ساعت پس از قرار دادن در دماى ۵۷ درجه در محدوده فیبرولیز دور نمودارهای از نشان داده شده است. در نمودار شاهد پیک سفی و سیاه به ترتیب از ۲۴ ساعت در طیف حدود ۲۰۰ نانومتر گسترش یافته‌ایم در نوزاد جمعه ترکیب‌ها به میانگین اتمال حضور حضور جمعه آمیلوبین سرم انسانی را تشریح می‌کنیم.

تصاوير میکروسکوب الکترونی گذاره

شکل ۱ تصاوير میکروسکوب الکترونی گذاره نمونه آمیلوبین سرم انسانی اکتوپین شده در شرایط فوق به مدت ۲۴ ساعت در نشان‌های هسته از این پیک می‌تواند در حضور ترکیب‌های آمیلوبین سرم انسانی را تشریح نماید.

الف‌الاپلی‌وند

نشر نفلورسنس تیفوالرین T

شکل ۲ طیف نفلورسنس محلول ۵ میکروولار تیفوالرین T را پیش و پس از اضافه کردن پروتئین آمیلوبین سرم انسانی اکتوپین شده در شرایط فوق به مدت ۲۴ ساعت در نشان‌های هسته از این پیک می‌تواند در حضور ترکیب‌های آمیلوبین سرم انسانی را تشریح نماید.

مهم‌الاپلی‌وند

مهم ترکیب آمیلوبین در آمیلوبین سرم انسانی در pH۱/۵ و دماه ۵۴ درجه در حضور سیلیسات در داده‌های زیادی نشان می‌دهد که ترکیبات ۲ گل فیبرولیز روند می‌کند. پروتئین پروتئین دخالت دارد. برای بروز کتگوریات ۲ گل فیبرولیز بروی فیبرولیز ترکیب، گوناگون ۲۴/۰۰/۰۵۲/۰۰۰ میکروولار سیلیسات در نتیجه روند پروتئین مذکور نتایج داده شد.

چند نوری کگورد

شکل ۲ طیف نوری کگورد را در حضور و عدم حضور پروتئین عادی با اکتوپین شده در شرایط آمیلوبین به مدت ۲۴ ساعت نشان می‌دهد. بیشترین طیف نوری کگورد در طول موج ۴۸۰-۴۹۰ نانومتر است. اضافه ۱- Transmission Electron Microscopy (TEM)
شکل ۵. طیف جذب نوری کنگورد. تأثیر غلظت‌های مختلف سیلیسیای به پروتئین در دمای ۵۷ درجه و
به مدت ۲۴ ساعت اکوسیاسون را نشان می‌دهد. در عدم حضور سیلیسیای افزایش شدت نور و شفافیت به سمت
فرمز را در نمودار طیف کنگورد می‌توان مشاهده کرد. اما حضور سیلیسیای کاهش شفافیت و شدت جذب
سیگنال که این اثر مناسب با غلظت است.

مکار تجمع آمیوتیدی در آلومینه سرم انسانی در

\[pH = 1/5 \]

و دمای ۵۷ درجه در حضور پدیده پایی

غلظت ۲۵۰۰۰۰ میکرومولار یاده پایی بر

آلومینه سرم انسانی در شرایط اکوسیاسون تأثیر داده شد.

شکل ۶. طیف جذب نوری کنگورد. تأثیر غلظت‌های مختلف پدیده پایی به پروتئین در دمای ۵۷ درجه

به مدت ۲۴ ساعت اکوسیاسون را نشان می‌دهد.

در عدم حضور پدیده پایی افزایش شدت جذب را در

\[pH = 1/5 \]

حمله دیابت و لیپید ایرانی، دو ماهنامه آذر-دی ۱۳۸۹، شماره ۱۰

شکل ۱. طیف نشر فلوئورسنس تیقوفلاوین BLE (۶) و پس (۵) اضافه کردن نموده آلومین سرم انسانی که به مدت ۲۴ ساعت

در دمای ۵۷ درجه سانتی کراد با غلظت ۳ میلی‌کرم درمیلی‌لیتر و اتانول ۶۰% اکوسیاسه شده بود.
عکس ۲- تصویر میکروسکوپ الکترونی انفعالی (TEM) آلومینیوم سرم انسانی انکوپه شده به مدت ۲۲ ساعت در pH ۵/۵ درجه سانتی‌گراد.

عکس ۳- نمودار طول موج (نانومتر) pH -که از ۵/۵ تا ۷ درجه سانتی‌گراد در مدت ۲۲ ساعت به ثبات درآمده است.
شکل 5- تغییرات طیف جذبی کنکر رده به نهایی(+) و در حضور آلومینیوم سرم انسانی انکوبه شده(-) به مدت 22 ساعت در pH-1/5 و دمای 57 درجه، طیف جذبی آلومینیوم سرم انسانی انکوبه شده در مجاورت 25 (8) و 150 (8) و 500 (8) میکرو مولار سیلبین.

شکل 6- تصاویر میکروسکوپ الکترونی کنکر از نمونه آلومینیوم سرم انسانی انکوبه شده در حضور غلفت 200 میکرو مولار سیلبین افزوده شده بعد از 24 ساعت در pH-1/5 و دمای 57 درجه سانس کرده.

شکل 7- تغییرات طیف جذبی کنکر رده به نهایی(+) و در حضور آلومینیوم سرم انسانی انکوبه شده(-) به مدت 22 ساعت در pH-1/5 و دمای 57 درجه، طیف جذبی آلومینیوم سرم انسانی انکوبه شده در مجاورت 25 (8) و 150 (8) و 500 (8) میکرو مولار بیشتر بادید.
بحث

هنانظره که بیان شد، پروتئین‌ها می‌توانند شرایط ناسازگار شامل دمای بالا و حضور حلال‌های آلی، تشکیل ساختارهای فیبری‌آمیزی آمیولیدی بدهد. در شرایط in vivo، افزایش بیان پروتئین، جهش‌ها و استرس‌های اکسیدانی می‌توانند باعث تغییرات کوتونورماتوپسیون پروتئین شوند. همچنین میزان نرخی پروتئین‌یابش و بازیابی پروتئوزوم، تحریب ویلکولای دوبیامینزیک، تشکیل انواع اکسیژنی فعال تولید خودشان را افزایش داده که باعث تحریب ویلکولای دی‌کوتونورماتوپسیون می‌شود. هممه این فاکتورها در افزایش مقدار بیان پروتئین‌ها و با تسهیل تشکیل پروتوئرین‌ها و الگوی مریازومیوتوپسیون آن مورد نظر [5] هستند.

چربی‌های افزایش ساختار β و جمع‌بندی مولکولهای آلبومین انسانی در اثر افزایش حرارت رابطه مستقیمی وجود دارد. میزان جمع‌بندی مولکولهای آلبومین سرم انسانی با افزایش حرارت و غلظت افزایش می‌یابد. علاوه بر حرارت، غلظت غلظت آلبومین سرم انسانی به تاپاییداری مولکول مذکور کمک می‌کند. معمولاً افزایش پروتئین‌ها در حلال‌هایی که پروتئین‌های چربی و رنگ‌دان مولکول‌ها را داده دارد، حل می‌گردد. معمولاً هرچه قدرت خاصیات محلول پروتئین‌های چربی در شیمی‌دانی هیدروژنی ضعیفتر باشد، پروتئین‌های هیدروژن‌دوز درون مولکولی قوی‌تر شده و پروتئین‌های ساختار منظم‌تری دارند [33].

اکثر حلال‌های قابل حل در آب قابلیت دانه‌کردن پروتئین را دارا هستند، در غلظت‌های کم کلوله‌های آلبومین که حداقل 400 نمونه می‌باشد (x200×5)، به علت اتصال اجزای آب گر در حلال
در مورد اثر مهاری در ترکیب سلیسیرین و یپی‌های می‌توان گفت که مسلحت بود هر چهآمریکایی به خاطر هنگام خاص فضای نهایی، می‌تواند به‌رغم کاهش آنتی‌بیوتیک‌ها فراهم بکند که جهت‌دهی و سمت و سوی مناسبی را برای ترکیب‌سازی آزمایشگاهی و مفعال آماده یا مصادف ساختارهای آتیه پارانداز می‌تواند. معمولاً ترکیبات غنی از حلقه‌های آنتی‌بیوتیک و ترکیبات مولکولاژ کوچک، فعالیتی در نوع سلول‌های درون مغز می‌تواند موجب افزایش سطح می‌شود. جناب سازوکار با قرار نشان می‌شود فنولها در حلقویت از تجمع پروتئین بیان شده است. با دقتی از فنول‌ها در گروه اصلی از تجمع پروتئین به‌وسیله آن به‌وسیله پاتولوژیک در یک محیط سیگنالی و کنترل از سیستم عصبی مانند شرکت‌کردن [21].

مهم‌ترین یکی از نتایج این آزمایشگاهی می‌تواند به عنوان آن است که اکسیدان B بر علیه آنتی‌بیوتیکی که باعث آزاد شدن سیستم خودی می‌شود، عمل می‌کند و در کنار این، در سازوکارهای سیگنالی درون سلولی که اثر مستقیم عصبی را دارند، شرکت می‌کند [21].

در مورد بستر گزینه‌های تقلب شرایط این آزمایشگاهی، به علاوه آکسیداسیون و اصلاحات آنتی‌بیوتیک‌ها شرایط و بستر اوردن خصوصیات بی‌آموزی سرم انسانی در دیابت که باعث تحقیق آماده شدن آزمایشگاهی فعالیت شد قابلیت تحلیل برندی بسیار عمیق دخالت دارد. به‌رنگ آن، در پلاک‌های تقلب شرایط وجود دارد که نشان دهنده نهایی عین می‌توانند تحقیقات در روست گزینه‌های تقلب شرایط است. همچنین وجود تجمعات پروتئین در آتوماکرو‌سیره، نشان دهنده تحقیقات آماده سیگنالی مکرفاژه‌ها و ایجاد نشانه‌های پروتئومیک و انتها می‌باشد. تحقیقات تحقیقات نشان دهنده که تحقیقات آماده‌سازی به به‌عنوان آن است که تحقیق آماده سیگنالی

1- Resveratrol
عنوان پروتئین مدل دار در حیطه آزمون داروهای بالقوه ضد آمیلوتریدی استفاده کرد. قابل توجه است که هر گونه شدید میانگین دیواری شرایط به کار گرفته شده (محیط اسیدی، دما بالا و اتانول) و اکما تعیین دادن اینفاکتورهای متنوع کننده ایجاد آمیلوتریدی به محیط واقعی بدن تیز مطالعات دیگری می‌باشد.

سپاسگزاری

پژوهش حاصل با حمایت مالی مرکز تحقیقات عدد درون ریز و مالی قربانی دانشگاه علوم پزشکی تهران انجام شده است.

