بررسی اثنا و مهار تجمیع آمیلوبیدی آلیومین سرم انسانی

مريمچيناه 3، آزاده ایرامی حسینی 3، علی قاسمی 3، باقر لاریجانی 3

چکیده

مقدمه: در بیماری دیابت، آلیومین سرم انسانی تماشای بالایی در اتصال به نقد و گلایکه شدن (Glycation) از خود نشان داده است. گلایکه شدن آلیومین سرم انسانی، زمینه برای تشکیل اشکال تجمیع فراهم می‌کند. با توجه به عدم بی‌دردشته تجمع و تشکیل آمیلوبید، مکانیسم قائل می‌گردد که در بیماری‌های مرتبط با پروتئین‌ها، مطالعه‌های پروتئین‌های مدل و بدست آوردن اطلاعاتی برای مورد بی‌گونگنی این پدیده‌ها، می‌تواند در مقاله با اشکال تجمیع راه‌گشا باشد. تحقیقات مربوط به تاثیر ترکیبات آمیلوبیدی کوچک به فیبرپلاسیون پروتئین‌ها نیز می‌تواند در راستای طریقی و بهینه‌سازی این مولکول‌ها به عنوان دارو در درمان بیماری‌های آمیلوبیدی کمک کند.

روش‌ها: الگای تغییرات ساختاری آلیومین سرم انسانی ابزار شده در بیماری دیابت به‌عنوان انحلال pH یا باین و در حضور حلال آن اتانول به مدت 24 ساعت انجام گرفته. ایجاد آلیومین به‌عنوان اپیکربوسمی می‌کند که در نظر داشته که از طرف دیگر، نشان دهنده فلورسنس تیوپلازی‌بندی نیز، دور می‌گذاری حلقه‌ای (CD) و میکروسکوپ الکترونی بانکری (TEM) بسیار می‌شود. در عین حال، از دو ترکیب به نام سیلبین نیز به دیدگاه این نشان دهنده در فرآیند فیبرپلاسیون استفاده شد.

یافته‌ها: آلیومین سرم انسانی در شرایط ابتدایی قادر به تشکیل ساختار فیبرپلاسیون آمیلوبیدی است و هر دو ترکیب مذکور قادر به کاهش فیبرپلاسیون در این پروتئین بودند.

نتیجه‌گیری: در این تحقیق نشان داد که آلیومین سرم انسانی بدون گلایکه شدن، استعداد ایجاد اشکال تجمیع را دارد. جهت مهار این بیمار، سیلبینی نسبت به دیده با پایدارتری تاثیر بیشتری بود و می‌تواند به عنوان داروی بالقوه در مهار آلیومین مطرح‌باشد.

واژگان کلیدی: آلیومین، فیبرپلاسیون، تجمیع پروتئینی

1- گروه زیست شناسی، دانشکده علوم پایه و واحد علوم و تحقیقات دانشگاه آزاد اسلامی، تهران
2- مرکز تحقیقات علوم بهداشتی و درمانی، دانشگاه علوم پزشکی تهران
3- مرکز تحقیقات پوستی و بیولوژی پوستی، دانشگاه تهران

*نشانه تهران: خیابان کارکر شمایی، بیمارستان دکتر شریعتی، طبقه پنجم، مرکز تحقیقات علوم بهداشتی و درمانی و دانشکاه علوم پزشکی تهران. کد پستی: 141141127174، تلفن: 322220037، ضمایر: 052782222008، پست الکترونیک: aehabibi@sina.tums.ac.ir
مقدهم

زمانی که شرایط طبیعی به حالت غیرطبیعی تبدیل می‌شود، خیال از پروتوینها تمایل شدیدی به ایجاد تجمعات با ساختار دائمی آمیلولیدی دارد. پسنداد این است که این ترکیب از صربستی و خاصیتی ساختارهای پایین‌ریز دارد. این پروتوین‌های آمیلولیدی تجمعات پایین‌ریزی یا پایین‌ریزی به مصرف یک ذرات ساختارهای شدید توسط شرکت‌های

بنا هستند که عمود بر محور اصلی فیبریل قرار دارند.

این چنین ساختارهایی نشان داده‌اند که در پیامدهای تحت‌ریز بیماری این ماده از جمله احتمالات در تقلیل و انقلال اطلاعات شرکتکنیک و ارتباط بسیاری از پتاسی و شرکتکنیک پایین داده است. به دلیل نقش فشون انسولین در درمان، تحقیق‌های زیادی بر روی اثرات تجمع انسولین انجام شده است ولی باید به نظر گرفت که پروتوین‌های دیگر نیز وجود دارند که ممکن است وقتی در معرض شرایط غیرطبیعی هسته‌ای آمیلولیدی می‌شود، پروتوین‌های این مسائل پروتئین‌های در معرض قرار گرفته، آلیومین سرم انسان است که در اثر گلاکسیک شدن می‌تواند تکثیر ساختارهای این مسائل به دلیل نمایان کارکرد شرکتکنیک در ساختارهای پایین‌ریز آمیلولیدی آلیومین.

در شرایط اسیدی و بدون قرار گرفتن در معرض تکثیر شرکتکنیک.

برای تحقیق تأثیر شکل و تکثیر شرکتکنیک آمیلولیدی آلیومین به دنبال ان تجمیع پروتئین در تحقیقات پتاسیم و داروزی و پیونکولزی نیز یک موضع اصلی و مهم تحریک، بررسی امکان تکثیر شرکتکنیک آمیلولیدی آلیومین به دنبال ان تجمیع پروتئین در تحقیقات پتاسیم و داروزی و پیونکولزی نیز یک موضع اصلی و مهم می‌باشد. این موضوع برای طراحی دارو یا ازدیابی بیمار

نتایج مصرف فرمولوژی‌های دارویی، محصولات غذایی و برای توانسته به بهبود مقاومت مواد نگهدارنده بسیار

ضروری است [5].

نتایج آمیلولیدی اغلب به دنبال باز گذشتن جزئی ساختار

پروتئین و پیام‌های آلیومین شکل پروتئین تن‌شکل و تکثیر شکلی پروتئین می‌شوند. پروتئین‌های آلیومین یک توران دوی آمیلولیدی داشته باشند. به طور کلی جزئیات ساختاری پروتئین و خصوصیات حلال،
آماده‌سازی محلول پروتینی

ماده‌های کره‌کاخ از تشکیل فیبر ال‌ام‌سی آماده کردیم.

با توجه به هم‌بود بسیار زیاد این پروتئین در زیست‌شناسی مختلف تحقیقاتی، این مطالعه الفا ساختار ال‌ام‌سی آماده کردن داروی سرم انسانی بررسی شد. به دلیل حذف ذکر این کاننده تشکیل‌دهنده ال‌ام‌سی در نظر گرفت، طبعی است که پایین و دما یالی به کار گرفته شده در دست انتقال می‌آید و ییده‌ای که در شرایط آزمایشگاهی مطالعه شده است تشکیل مدلی از ال‌ام‌سی آماده کردن است که امکان ایجاد آن در معرض علالی ایجاد می‌کند. نتایج در دمای بالا مشخص شده است. همچنین در ترکیب سلیسیس و پیدایش پایداری برای کنترل کننده مصرف این پروتئین در منوهای انسانی و دیوار خون، نتیجه‌گیری شد. پس از ایجاد جسمیت در طول مدت ۴۵۰ نانومتر، نیولووانی تی نیو فیتی، را با حداکثر سرعت در ۴۶۰ نانومتر نشان می‌دهد.[۱۹]

جذب نوری کنگورد

میلی‌گرم کنگورد در یک میلی‌لیتر برف‌که شامل ۱۵ مولار و ۵ میلی‌لیتر فسفات سدیم (pH=7.۴) حل شده و ۵ میکرولیتر از محلول سرنگی با منفی ۳ فیلمتر کنگورد اضافه شده و به مدت ۳۰ دقیقه در طول Shimadzu UV-1800 (کیوتو - زابای) ابزار نمایش داده شد. طیف‌گیری UV–VIS (اثر آبی) داده‌گیری شد [۲۰].

تیپ دورنگ نمایی دورانی

طیف‌های دانه نمایی دورانی پروتئین در حساسیت میلی‌گرم در دو میلی‌متر (nm=۲۰۰) با استفاده از ابزار وارن-۱۸۰۰-۱۹۵۰nm به دست آمده. برای AVIV ۲۱۵ استاندارد ابزار میلی‌گرم‌یابی‌سازی شد.

1- Cary Eclipse VARIAN
2- Circular Dichroism (CD)
طیف دوربرنگ نمایی دورانی

شکل ۳: طیف دوربرنگ نمایی دورانی سرم انسانی به همراه اندازهگیری pH. در بردارهای مولکولار آبیسین با pH=1/5 ساعت پس از قرار دادن در دمای ۵۷ درجه در محدوده فرآیند شده در نمونه آزمایشی زیر نشان داده شده است. در نمونه شاهد پیشوند و عدم پس از ۲۴ ساعت در طیف حدود ۲۰۰ نانومتر هستهی، این نوع پیک ماید حضور ساختارهای بنا می‌باشد و احتمال حضور تجمعه‌ای آمبولویدی آلبومین سرم انسانی را تشدید می‌کند.

تجهیز میکروسکوب الکترونی گذاره

شکل ۴: تصاویر میکروسکوب الکترونی گذاره نمونه آلبومین سرم انسانی تکه‌الکلی شده، همراه با مدت ۲۴ ساعت در شرایط فیزیولوژیک. ساختارهای میکروسکوپی که عمدتاً مستقیم و فاقد شاخه هستند در تصویر قابل مشاهده هستند.

فناوری آمبولوید

فناوری آمبولوید تکه‌الکلی نمونه آلبومین ۷-

شکل ۱: طیف نورالاساس مولکول ۵۶ میکرومتر

نوفالاژن T را پیش و پس از اضافه کردن پروتئین آلبومین سرم انسانی به اکوئیل شده در شرایط فوق به مدت ۲۴ ساعت نشان می‌دهد. پس از برانتگیچی در طول موج ٤٥٠ نانومتر، نوفالاژن T ضعیفی را به حداکثر شدت در ٤٨٥ نانومتر در شرایط اکوئیل نشان داده می‌شود. به عقیده تغییر قابل مشاهده‌ای در شدت با اکوئیل طیف نوزش تیوفالاژن T قبل از اضافه کردن پروتئین اکوئیل شده در شرایط آمبولویدی ایجاد نمی‌شود ولی پس از اضافه کردن پروتئین اکوئیل شده در شرایط فوق، افزایش شدید نشان می‌دهد.

نوع نورالاساس تیوفالاژن

شکل ۲: طیف جدید نورالاکسپرسیون در حضور و عدم حضور پروتئین عادی با اکوئیل شده در شرایط آمبولویدی به مدت ۲۴ ساعت نشان می‌دهد. به‌طور جدید کنگور در طول موج ۴۹۰-۴۸۶ نانومتر است. اضافه

1- Transmission Electron Microscopy (TEM)
نمودار طیف کنگورد می توان مشاهده کرد. اما حضور یادی پامید موجب شد جذب می گردد، که این اثر متناسب با ذوب شد.

 تصاویر میکروسکوب الکترونی گذشته از میان غلظت های مختلف سلیسیتان و یا پامید، گزارش گردید که در غلظت های نیترات، پرتره، فرایند بیولیزران آلبوسین سرم انسانی انتخاب شدند که طیف کنگورد آنها کمترین جذب و شفته به سمت راست را داشت (شکل 1).

 از تصاویر میکروسکوب الکترونی مشخص است که هم سلیسیتان و هم یدی پامید بر روی فرایند بیولیزران پرتره، مذاکر تا به پایان فرایند بیولیزران آلبوسین و سقف هم اکثر شکل از طرفین پرورید. اما داده ها نشان می دهد که اشکال حاصل از مدیریت در اطراف ریزه پوست جسمی ریزه را در عضلات بدن ایجاد نمی نماید بلکه ی زیادی به بررسی بیشتری دارد.

 شکل 5 طیف جذب نوری کنگورد، تأثیر غلظت‌های مختلف سلیسیتان به پرتره در دماهای 17 درجه و به مدت 24 ساعت انکوباسیون را نشان می دهد. در عدوم حضور سلیسیتان افزایش شدت نوش شفته به سمت فرمز را در نمودار طیف کنگورد می توان مشاهده کرد. اما حضور سلیسیتان موجب کاهش شفته و شدت جذب می گردد که این اثر متناسب با غلظت است.

 pH 5/15 در درجه 75 درصد حضور یدی پامید غلظت 25 و در دماهای 1000 میکرومولار به پرتره آلبوسین سرم انسانی در مرطوبات انکوباسیون تأثیر داشت. شکل 6 طیف جذب نوری کنگورد، تأثیر غلظت های مختلف یدی پامید به پرتره در دماهای 57 درجه و pH 15 به مدت 24 ساعت انکوباسیون را نشان می دهد. در عدم حضور یدی پامید افزایش شدت جذب را در
شکل ۲- طیف جدیدی کرودر (Λ) پس از اضافه کردن آلومین سرم انسانی اکوپی به مدت ۲۲ ساعت در pH۵/۱ و دمای ۵۷ درجه سانتی‌گراد (+) و در مجاورت آلومین سرم انسانی اکوپی نشده (○) است.

شکل ۳- طیف دورک دمایی دورانی آلومین سرم انسانی در pH۵/۱ (▲) بلکه (●) و بعد از اکوپیسیون (○) به مدت ۲۲ ساعت در دمای ۵۷ درجه + واحد فیزیکی مولار (آلفاپتیسکه مولار) ۱ است.

شکل ۴- تصویر میکروسکوپ الکترونی انتقالی (TEM) آلومین سرم انسانی اکوپی به مدت ۲۲ ساعت در pH۵/۱ و دمای ۵۷ درجه سانتی‌گراد.
شکل 5 - تغییرات طیف جذبی کنتکورد به پایان (رهیابی) و در حضور آلبومین سرم انسانی اکتوپلی شده (به مدت 24 ساعت در pH 1/5 و دمای 25 درجه، طیف جذبی آلبومین سرم انسانی اکتوپلی شده در مجاورت 50 (8)، 100 (4)، 150 (3) و 200 (2) میکرومولار سیلبیوبین.

شکل 6 - تصاویر میکروسکوپ الکترونی نشان دهنده افزایش حسپاره آلبومین سرم انسانی اکتوپلی شده در حضور 200 میکرومولار سیلبیوبین از مدت 4 ساعت در pH 1/5 و دمای 57 درجه سانسی کراد.

شکل 7 - تغییرات طیف جذبی کنتکورد به پایان (رهیابی) و در حضور آلبومین سرم انسانی اکتوپلی شده (به مدت 24 ساعت در pH 1/5 و دمای 25 درجه، طیف جذبی آلبومین سرم انسانی اکتوپلی شده در مجاورت 50 (4)، 100 (6) و 200 (2) میکرومولار بیشتری پایین می‌شود.
بحث

همانطور که بیان شد پروتئین‌ها می‌توانند شرایط نامناسب شامل دمای بالا pH پایین و حضور حلاله آنی تشکیل ساختارهای فیبریلا آلبومینی‌ها دهد. در شرایط in vivo افزایش بیان پروتئین، جهش‌ها و استرس اکسیدانی می‌توانند باعث تغییرات کوئنفورماتسون پروتئین شوند. همچنین مهار تجزیه پروتئین وابسته به پروتروژوم، تخریب و ریکولیون دوباینتریک، نشانگر انواع اکسیژنی فعال تولید خودشان را افزایش داده که باعث تخریب عملکرد میکروکریتی می‌شود. همه این اتفاق‌ها در افزایش مقدار بیان پروتئین و یا تسهیل تشکیل پروتوفیبرلز و الیگورن مربوط به آن می‌باشد. [5]

بین افزایش ساختار β و تجمیع مولکولهای آلبالوی سرم انسانی در اثر افزایش حرارت رابطه مستقیمی وجود دارد. میزان تجمع مولکولهای آلبالوی سرم انسانی با افزایش حرارت و غلظت افزایش می‌یابد. علاوه بر حرارت، افزایش غلظت آلبالوی سرم انسانی به تایپیداری مولکول مذکور کمک می‌کند. همچنین مقدار افزایش در حلالهایی که پروتئین‌های تجزیه شده، حلال می‌گردد. همچنین به‌طور کلی، افزایش در نسبت پیوند هیدروژنی ضعیفتر بالاتری، پیوندهای هیدروژنی درون مولکول‌ها برخورد می‌شود و در نتیجه تغییرات متعددی که در ساختار مولکولی پروتئین در حلالهایی که پروتئین‌ها غیر قطعی هستند، انجام می‌یابد. این عوامل بر این اثر که شرایط اسیدی باعث دناتوراسیون پروتئین‌ها

شکل 8- تصاویر میکروسکوپ الکترونی کدآره انتمونه آلبالوی سرم انسانی در حضور غلظت ۲۰۰ میکرومولار بی‌پدید آمدن افزوده شده بعد از ۲۲ ساعت در pH=۱/۵ و دمای ۷۵ درجه.
در مورد اثر می‌تواند در دلالی در دلالی، ظرفیت‌های آزمایشگاهی به دلیل هندسه‌ای بیانگر تعداد نرخ و در مerto نسبت در دلالی، ظرفیت‌های آزمایشگاهی به دلیل هندسه‌ای بیانگر تعداد نرخ و در مerto نسبت

1- Resveratrol

مجله دیابت و لیبید ایران، دو ماهنامه آذر- دی 1389، دوره 10 (شماره 2)

شده و در محرز بعد از مولکولی کلی بعث تحیریک

تاچوکریک مجدد و تکیک سابقه‌ای یا می‌تواند در واقع

الکل باعث القای هرچه بیشتر ساختار فیبرولیز در پروتئین

می‌شود.

مجموعهگرای، کم آمی و تعمیم است در خون موسوم به

کوکسیدین است که پیک مالی تهدید کننده حیات به شمار

آمده و پایدار تقریباً درمان گردد [77] احتمال دارد که

PH وجود

این انجام تغییرات سابقه‌ای را هم از در این اثبات

خورده خالی (اتئال) بهتر و سریع شکل می‌شود و

این تکث نشان دهنده یکی از آثار مربوط حضور چنین

تکیه‌گاهی در بدن است.

اثر پروتئین‌های موجود در بادک‌های تصب شرایط در

در محوت کننده فنول با

امولگ‌های شهرت فنولیک با

2 تا 3 اتم اتصال دارد که برای اتصال غیر کووالان با

ساختار یا مورد نیاز است و ممولگ‌های طبیعی فیبرول

آمینولیدی است اتصال الگوی را مهارت می‌کند و در

مرحله هسته‌ای دخالت ندارد و با مولومای

آمیونلیدی برهمکنش نمی‌دهد. بلکه کره‌پوشی

آنها با ساختار آمینولیدی است. این اتصالات و

برهمکنشها به کوپرمرامین وابسته هستند و به تاردی

پروتئین‌های بسیاری ندارند. بیشتر می‌شود که پروتئین‌هایی که

دارای بی‌پروپان و قرین آلاین فرآیند ساختار

آمینولیدی دارد. همچنین این تدریج در جهت ساختار فضایی که

برهتنیهای برهمکنش پیلیونفک و به دلیل تالاب دارد. جهت دیگر از جهت ساختار

را احتمال می‌کند و به دلیل تالاب دارد. جهت دیگر از جهت ساختار

پروتئین‌های بسیاری ندارند. بیشتر می‌شود که این تکیه‌گاهی در

مهم کندن‌ها خوبی باشد [32]. تحقیقات مربوط به تاثیر

لیبراسیون و انجام نشانه‌های پروتئومیک و تهاب

می‌باشد. تحقیقات ساختار داده که این توجیه از استفاده

و تکنیک مولکول‌نیز در

گردش حلال آنتی‌بیوتیک و سریع شکل می‌شود و

این تکث نشان دهنده یکی از آثار مربوط حضور چنین

تکیه‌گاهی در بدن است.

اثر پروتئین‌های موجود در بادک‌های تصب شرایط در

در محوت کننده فنول با

امولگ‌های شهرت فنولیک با

2 تا 3 اتم اتصال دارد که برای اتصال غیر کووالان با

