کاهش میزان تشکیل آمیلوبن انسولین در اثر تغییر شمایی اسید آمینه لیزین توسط سیتراتوکین انتهادی

چکیده

مقدمه: فیبرهای آمیلوبنی، ساختارهای منظم حاصل از تجمعات پروتئینی می‌باشند که از جمله در محل تزریق‌های مکرر انسولین مشاهده شده‌اند. تغییر در ساختار انسولین می‌تواند باعث کاهش میله این تجمع شود. در تحقیق حاضر، لیزین انسولین با استفاده از سیتراتوکین انتهادی تغییر داده شده است و تأثیر این تغییر بر این فرایند بررسی شده است.

روش‌ها: برای چند هفته بر روی انسولین و تبدیل فرم هگزاگیری آن به فرم مونومری و فعالیت با فاکтор حاوی استفاده شد. تغییر شمایی لیزین با استفاده از سیتراتوکین انتهادی در محیط بازی انجم شد. سپس هر دو نمونه طبیعی و تغییر داده شده به مدت ۲۴ ساعت در شرایط تغییر تجمعات آمیلوبنی در گروه‌های زوج و فلورسنس‌زدایی، نواحی محسوسی را در این ساختارهای یکنواختش و نیمی این نمونه تنا نداد. بررسی و مقایسه دو نمونه شاهد و آزمونی پس از ۲۴ ساعت انکوپاسیون در شرایط تغییر تجمعات به وسیله تکنیک‌های دو رنگ نمایی دورانی دور، مطالعه تغییرات جذب نوری کنگورد با تکنیک اسپیکروتوپی، بررسی طبقه‌بندی تی‌پلاکین با استفاده از فلوورسنس‌زدایی و تاکسی کاهش میزان تشکیل آمیلوبن (فیبرهای آمیلوبنی) در محیط بازی انجم شد.

نتایج: تغییر شمایی اسید آمینه لیزین در پروتئین انسولین به وسیله سیتراتوکین انتهادی باعث کاهش قابل ملاحظه تجمعات آمیلوبنی می‌شود که بالقوه نوع مطلوب برای انسولین را بسته می‌دهد.

واژگان کلیدی: انسولین گاوی، لیزین، سیتراتوکین انتهادی، تجمعات پروتئینی (فیبرهای آمیلوبنی)

1- گروه زیست شناسی، دانشگاه علوم پایه، واحد علوم و تحقیقات دانشگاه آزاد اسلامی تهران.
2- مرکز تحقیقات پویاییت و بیماری‌های دانشگاه تهران.
3- پژوهشگاه صنعت و محیط زیست، پژوهشگاه ملی مهندسی زیست و زیست فناوری، تهران.
4- گروه آندروولوژی، مرکز تحقیقات پزشکی ناباروری، پژوهشگاه روانی؛ تهران.
5- مرکز تحقیقات دندانپزشکی و متخصصی، دانشگاه علوم پزشکی تهران.

روش‌ها

تهیه انسلول مونو-و تیتان غلظت آن
برای انجام آزمایش‌ها به‌منظور ساخت آن در اینجا آمده، امکان انجام
ارزی‌سازی در سطح آن می‌باشد. این انسلول در اثر وابستگی به امریکا، فرآیند
ارزی‌سازی عوامل مختلف استفاده می‌شود. (۳۵) طی مطالعات مختلف
مشخص است که برای تهیه موفقیت‌های انسلولی در شرایط
متنوع، داشته باشیم. امکان حق بازی از مسئولیت‌های انسلولی
داده‌ای معادل آن در این مورد بررسی و در تصمیم‌گیری شده است...

مقدمه

دیابت ۱ یکی از عوامل‌های اصلی اختلالات متابولیسمی
می‌باشد. دیابت نوع ۱ و ۲ به صورت هیپر‌کلسین مرموز و
اختلال در فواره‌های این دیابت یکی از عوامل‌های
مشخص سبب منجر به افزایش است که نشان داده شده است که
انسلول را در اثر هیپر‌کلسین در محل تریکلیز زیر
پویا انسلولی و همچنین در این استفاده از پنج های این
در بیماران دیابتی نوع ۱ مشاهده شده است که این
باعث نبوده. محققان انسلول می‌گویند (۴) طی مطالعات
متفاوت انجام شده است. برای مثال انسلول قادر است در
مایه (۷) pH = ۷/۵ حلال شد. با این حال
ظرفیت می‌باشد. سپس برای خرید کردن
منقل به‌منظور زیر ملی‌متر از مساحت انسلول، از روش دیالیز
امتیاز منفی کیسه دیالیز به کار رفته ۳/۵
بود که بررسی وزن مولکولی انسلول به
همانند می‌باشد. در انتخاب
در حیطه pH = ۷/۵ و TEDA
ردیت می‌باشند. سپس به دنبال
در حیطه pH = ۷/۵ و TEDA
دیالیز به کمک اسکیپسکوپ مورد بررسی قرار گرفت.
که تهیه می‌باشند. شده می‌باشد. به سه مره هر یک از
نحویت انسلول به توانایی پذیری گرفته
۳۰۰ نانومتر مه‌ای ساخته‌گری (ضرب جذب انسلولی)
در TEDA pH = ۷/۵ حلال شد. هر
مارک گرم بر میلی‌لیتر ۱ در نظر گرفته شد.

مصرف‌های گذشته پرورنک

دو میلی‌لیتر محلول پرورنک حاوی ۱ میلی‌گرم بر میلی‌لیتر
در بافت فسفرات ۵۰ میلی‌متر pH = ۸ تهیه شد. یک
میلی‌لیتر با ترکیب محلول TEDA به دست آمده بود که بر
۲۰ میکرولیتر سیترات‌هیدروژن با pH ۷/۵ حجم
۴۰۰ میکرولیتر ریسید
دوباره ثابت نگه داشته شده و به عده ۸ برگ را داده شد.
محلول به دست آمده به مدت پنج ثانیه در دماه ایق اداره شد تا دیگر
شیمیایی انجام شود. پس از تیتاران یک جهت خروج
اضافه مصرف تقاضای انجام شد. TEDA انسلول
فشار TEDA pH = ۸ و فاقد
فسفات ۵۰ میلی‌متر

تغییر شیمیایی انجمن پرورنک

در میلی‌لیتر محلول پرورنک حاوی ۱ میلی‌گرم بر میلی‌لیتر
در بافت فسفرات ۵۰ میلی‌متر pH = ۸ تهیه شد. یک
میلی‌لیتر با ترکیب محلول TEDA به دست آمده بود که بر
۲۰ میکرولیتر سیترات‌هیدروژن با pH ۷/۵ حجم
۴۰۰ میکرولیتر ریسید
دوباره ثابت نگه داشته شده و به عده ۸ برگ را داده شد.
محلول به دست آمده به مدت پنج ثانیه در دماه ایق اداره شد تا دیگر
شیمیایی انجام شود. پس از تیتاران یک جهت خروج
اضافه مصرف تقاضای انجام شد. TEDA انسلول
فشار TEDA pH = ۸ و فاقد
فسفات ۵۰ میلی‌متر

تغییر شیمیایی انجمن پرورنک

در میلی‌لیتر محلول پرورنک حاوی ۱ میلی‌گرم بر میلی‌لیتر
در بافت فسفرات ۵۰ میلی‌متر pH = ۸ تهیه شد. یک
میلی‌لیتر با ترکیب محلول TEDA به دست آمده بود که بر
۲۰ میکرولیتر سیترات‌هیدروژن با pH ۷/۵ حجم
۴۰۰ میکرولیتر ریسید
دوباره ثابت نگه داشته شده و به عده ۸ برگ را داده شد.
محلول به دست آمده به مدت پنج ثانیه در دماه ایق اداره شد تا دیگر
شیمیایی انجام شود. پس از تیتاران یک جهت خروج
اضافه مصرف تقاضای انجام شد. TEDA انسلول
فشار TEDA pH = ۸ و فاقد
فسفات ۵۰ میلی‌متر

تغییر شیمیایی انجمن پرورنک

در میلی‌لیتر محلول پرورنک حاوی ۱ میلی‌گرم بر میلی‌لیتر
در بافت فسفرات ۵۰ میلی‌متر pH = ۸ تهیه شد. یک
میلی‌لیتر با ترکیب محلول TEDA به دست آمده بود که بر
۲۰ میکرولیتر سیترات‌هیدروژن با pH ۷/۵ حجم
۴۰۰ میکرولیتر ریسید
دوباره ثابت نگه داشته شده و به عده ۸ برگ را داده شد.
محلول به دست آمده به مدت پنج ثانیه در دماه ایق اداره شد تا دیگر
شیمیایی انجام شود. پس از تیتاران یک جهت خروج
اضافه مصرف تقاضای انجام شد. TEDA انسلول
فشار TEDA pH = ۸ و فاقد
فسفات ۵۰ میلی‌متر

تغییر شیمیایی انجمن پرورنک

در میلی‌لیتر محلول پرورنک حاوی ۱ میلی‌گرم بر میلی‌لیتر
در بافت فسفرات ۵۰ میلی‌متر pH = ۸ تهیه شد. یک
میلی‌لیتر با ترکیب محلول TEDA به دست آمده بود که بر
۲۰ میکرولیتر سیترات‌هیدروژن با pH ۷/۵ حجم
۴۰۰ میکرولیتر ریسید
دوباره ثابت نگه داشته شده و به عده ۸ برگ را داده شد.
محلول به دست آمده به مدت پنج ثانیه در دماه ایق اداره شد تا دیگر
شیمیایی انجام شود. پس از تیتاران یک جهت خروج
اضافه مصرف تقاضای انجام شد. TEDA انسلول
فشار TEDA pH = ۸ و فاقد
فسفات ۵۰ میلی‌متر

تغییر شیمیایی انجمن پرورنک

در میلی‌لیتر محلول پرورنک حاوی ۱ میلی‌گرم بر میلی‌لیتر
در بافت فسفرات ۵۰ میلی‌متر pH = ۸ تهیه شد. یک
میلی‌لیتر با ترکیب محلول TEDA به دست آمده بود که بر
۲۰ میکرولیتر سیترات‌هیدروژن با pH ۷/۵ حجم
۴۰۰ میکرولیتر ریسید
دوباره ثابت نگه داشته شده و به عده ۸ برگ را داده شد.
محلول به دست آمده به مدت پنج ثانیه در دماه ایق اداره شد تا دیگر
شیمیایی انجام شود. پس از تیتاران یک جهت خروج
اضافه مصرف تقاضای انجام شد. TEDA انسلول
فشار TEDA pH = ۸ و فاقد
فسفات ۵۰ میلی‌متر

تغییر شیمیایی انجمن پرورنک

در میلی‌لیتر محلول پرورنک حاوی ۱ میلی‌گرم بر میلی‌لیتر
در بافت فسفرات ۵۰ میلی‌متر pH = ۸ T
بررسی ساختار
فلوروسانس دانی برای بررسی ساختار سوم پروتئین قل و بعد از تغییر شیمیایی صورت گرفت. بررسی‌های فلوروسانس با استفاده از ایزو اسکین و فلوتریمتر (کری اکلبیس واریان) انجام شد. برای ثابت نگه داشتن دما از گرم کننده کری استفاده شد که قادر است دما را در محدوده 1/0 درجه ثابت نگه دارد. برای اندزه‌گیری نش فلوروسانس دانی پروتئین از طول موج 180 نانومتر پلاک ورگی خاص و استفاده قرار گرفت. به‌همین‌و‌همین لیست پراکنده‌گیری و نشر 5 نانومتر در نظر گرفته شد.

طرح‌های دوربرد نمایی دورانی (CD) پروتئین با استفاده از ایزو اسکین و فلوتریمتر 215 nm به منظور مقایسه AVIV 215 به میلی‌لیتر انسولین استفاده شد. طول موج 180 نانومتر پلاک ورگی خاص و استفاده قرار گرفت. به‌همین‌و‌همین لیست پراکنده‌گیری و نشر 5 نانومتر در نظر گرفته شد.

برای ارزیابی تشکیل یا عدم تشکیل فیبرهای آمیلوپدی از مخلوط نازه‌تهز شده کنگورد که با استفاده از صافی 2/0 میکرونی صاف شده. به‌همین‌و‌همین لیست پراکنده‌گیری و نشر 5 نانومتر پلاک ورگی خاص و استفاده قرار گرفت. به‌همین‌و‌همین لیست پراکنده‌گیری و نشر 5 نانومتر در نظر گرفته شد. به‌همین‌و‌همین لیست پراکنده‌گیری و نشر 5 نانومتر در نظر گرفته شد.

1- Cary Eclipse Varian
معیارهای نشکل فیبر آمیلوزیدی مورد استفاده قرار گرفته، 14 میکرو‌مولار استفاده در شرایط آمیلوزیدی، توسط محلول 50 میکرو‌مولار نگر قرمز تنگی به نمودن انگشه‌های به مدت 24 ساعت انجام شد.[۱۱]

دورنگ نمایی دورانی دور این بررسی شامل آنتی‌بیوتیک طیف CD در محدوده ۱۹۰-۲۳۰ نانومتر بود. طیف‌های دور نمایی دورانی پروتئین با استفاده از ابزار اسکیپ پلارامتر ۲۱۵ به AVIV دست آمده. برای اداره‌گیری طیف CD در محدوده فرابنفش دور از غلفت ۱۰۰ میلی‌گرم بر میلی‌لتر پروتئین و سال با ضخامت ۱۰۰ سانتی‌متر استفاده شد. شاخص ساختار آلفا در پروتئین وجود ۲ پیک منفی در ۲۰۴ و ۲۲۲ نانومتر و شاخص ساختار بتا وجود یک پیک منفی در تناهی ۲۱۸ نانومتر می‌باشد.

تصویربرداری مکروسکوپ الکترونی انتقالی در این راستا، ۱۰-۵۰ میکرو‌مولار از نمونه پروتئین برداشت شده و بر روی گردیده‌های پوشیده از کربن (۱۰۰۰) قرار داده شد. پس از ۴۵ ثانیه، گردیده‌ای آب و الکتری اتانی نمونه با استفاده از مکروسکوپ الکترونی انتقالی انجام شد. شاخص تشکیل فیبرهای آمیلوزیدی با به آمیلوزید، مشاهده فیبرهای مستقیم، طولانی و فاقد شاخه با قطر تقریبی ۱۰-۱۵ نانومتر در تصویر مکروسکوپ الکترونی انتقالی نمونه پروتئین است.

نشت فلوئورسنس تیوبلاوین

تشکیل در شکل ۵ نشان داده شده است. نتایج حاصل از نشر فلوئورسنس تیوبلاوین T بعد از انکوپاسیو نمونه‌ها به مدت ۲۴ ساعت کاهش قابل ملاحظه‌ای در نشتر فلوئورسنس را در شکل سیترائوئین شده انسولین نشان می‌دهد.
طیف دورنگ نمایی دورانی دور
با توجه به تبیخ بدست‌آمده از مطالعه صورت گرفته با استفاده از نشر فلوروسانس تیوفلاین T، به مطالعه تغییرات در ساختار سوم پروتئین انسولین در حالت سیتراکوئید شده و مقایسه آن با شکل طبیعی پرفروشش شد.
چنان که در شکل 6 نشان داده شده است، با استفاده از آنالیز طیف‌های جذبی دورنگ نمایی دورانی در حالت که در ساختار دوم، شکل طبیعی انسولین تغییر اتفاق می‌افتند، عدم افزایش میزان ساختارهای با در فرم سیتراکوئید شده پروتئین به وقوع می‌پردازد که نتیجه‌گیری بعضی تصاویر می‌باشد.

![نمودار طول موج فلوروسانس](https://example.com/image.png)

شکل 1- نشر فلوروسانس فلوروسکامین در مجاورت انسولین طبیعی (I) و تغییر داده شده با سیتراکوئید، 1(1) و 2(2) میلی مولار. علامت (0) نشان‌دهنده نشر پایه فلوروسکامین می‌باشد.
شکل 2- طیف نشانی فلوراسانس ذرات انسولین طبیعی (κ) و سیترکوانیل شده (θ) سیترکوانیک انتهدراید امیلی مولار در pH 7/5 در مولار 200 نانومتر بود.

شکل 3- طیف جذبی دورک نمایی دور انسولین در pH 7/5 نمونه طبیعی (κ) و تغییر داده شده با سیترکوانیک انتهدراید 1 مولار (θ) و 2 مولار (Δ) در مولار (دو واحد پیلاتس واری مولی است).
شکل 4- اثر سینترکوئین اندهیدریدبر در پوشش نیترل آمیانسیترکوئینه شده و انکوکمه شده در دما 73 درجه سانتی‌گراد و pH-7/5. جذب انامینه طبیعی در شرایط آمیانسیترکوئینه شده در شرایط آمیائوندی (b).

شکل 5- میزان فلوورسنس تیپولالوان T بعد از 24 ساعت انکوباسیون در شرایط آمیائوندی در نمودن انسولین طبیعی (b) و انسولین تغییر داده شده با سینترکوئین اندهیدریدبر (b).
بحث

برای شناخت سازوکار تجمع، شناخت نقش اسیدها با آمینه و تغییر شیمیایی آنها بسیار مهم می‌باشد. بعنوان مثال، در بیماری‌های آمیلودوزی با مشاهده این، وجود جهش در یک اسید آمینه می‌تواند حتی منجر به برزو آمیلودوزی در سال‌های جوانی گردد. موضع‌گیری و خصوصیات اسیدهای آمینه در پروتئین‌ها و مسأله میان کشا و دختر داخل مولکولی پایدار کننده ساختاری در آنها نیز اهمیت دارد. بسیاری از
می‌تواند تعادل فعالیت‌ها و منابع‌های سلولی را به‌هم بیندزد. از جمله این تغییرات، نیتروگریف‌های شیمیایی بعد از بیان در پروتوئین‌ها ایجاد می‌شود؛ از جمله اضافه آنزیم. این تغییرات سبب می‌شود وابستگی به انزیم‌ها ویاژه‌تری داشته باشند و در اثر این تغییرات، نیتروگریف‌های شیمیایی متقابل قرار گیرد که از جمله مهم‌ترین آنها اضافه شدن کد و میلی‌لی‌ایون‌های آنزیمی است. به این راه دست پیکرها با ترکیبات مختلف است. در این مقدمه، می‌تواند تحقیق و واکنش‌های گوناگونی از نظر انسولین و ترکیبات سیتوکاتیک آنها می‌تواند باشد. از آنجاکه در پروتوئین‌های انسولین فقط این اثر آن‌ها دارد، استفاده از آن‌ها در تصویر کردن محیط‌ها و وابستگی آنزیم‌آزاری از این تغییرات قابل توجهی است. پروتوئین شد در میانه یک لیزر انسولین سی‌وکاتیک شده است. مطالعه ویژگی‌های ساختاری پروتوئین‌ها و از این جهت می‌تواند بر روی آن‌ها اثر گذار و بسیار مدیریت پروتوئین‌ها در این بیماری، پروتوئین‌ها در این بیماری مفید هستند.

ساپسگاری

از تغییرات محتمل آزمایشگاه مواد حیاتی و تحقیقات بیوشیمی - بیوشیمی‌دانشگاه تهران به جهت زحمات بی‌شانست تحقیق می‌باشد و به‌سیاس از آن‌ها دکتر محسن نعمت کرگانی که جهت انجام طرح مورد نظر بدل می‌شود تحقیق این مطالعه با پیشنهاد فعلی صندوق حمات از پژوهشگران کشور انجام شده است.

مأخذ

1. هربارت، آدولف. بیوشیمی فارابی. ترجمه حمیدرضا کریم. زاده‌دهی‌ای، پژوهش‌های رفاهی. جاب، اول. سمری. 1387 صفحات 46-77.

