پذیرنده های زیستی در زیست حسگرها
کری امیدفر، بهنوس خورسندا سوردوکویی، باقر لاریجانی

چکیده
پذیرنده‌ها (زیست حسگرها) یک گروه از سیستم‌های اندازه‌گیری می‌باشند و طراحی آنها بر مبنای شناسایی انتخابی آن‌ها بر اساس اجزای بیولوژیکی و آشکار سازهای فیزیکی و شیمیایی صورت می‌گیرد. پذیرنده‌ها مشکل از سه جزو عنصر بیولوژیکی (Biological Recognition Element)، آشکار ساز (Detector) و مبدل (Transducer) می‌باشند. طراحی پذیرنده‌ها در زمینه‌های مختلف علوم بیولوژی و پزشکی در دو دهه گذشته گسترده چشم‌گیری داشته است. هدف از تعریف این مقاله ارائه دیدگاهی بر انتخاب مختلف پذیرنده‌ها که به منظور استفاده‌های درمانی و زیستی طراحی شده‌اند، در این ارتباط ثالث شده طبقه‌بندی مناسبی از انواع پذیرنده‌ها و مثال‌های مرتبط با آن ارائه گردید.

1- مرکز تحقیقات غدد دروسری و متابولیسم، دانشگاه علوم پزشکی تهران

پژوهشگران: هدایت درمانی، افضل‌الله شریعتی، سید مجید نادری، دیا شاهی، دکتر سیدجواد شکوهی، دکتر امیرحسین بهزادی

emrc@tums.ac.ir

تماس: 021-88226884

تاریخ دریافت: 88/03/18
تاریخ پذیرش: 89/08/28
تاریخ مرخصی اصلاح: 89/02/20
مقامه

فناوری بیوسنسور در حقيقیت نشان دهنده ترکیب از علوم بیوشیمی، پیوپولیویولوژی فیزیکی، شیمی، اکتربیوشیمی و کامپیوتر است. بکی بیوسنسور در حقيقیت شامل یک حسگر کیچک و ماده بیوسنسوری و تبیین شده بر آن می‌باشد. از انجا که بیوسنسور یا ابزاری است که سنسوری مولکول‌های زیستی می‌باشد، امروره‌ از آنها در علوم مختلف روشکی، علم شیمیایی، علوم خاکی، پاییز، میژدیت زیست، تولید محصولات دارویی، بهداشتی و غیره بهبود می‌یابد. در واقع این سنسورها ابزاری ابزاری توانسته جهت شناسایی مولکول‌های زیستی می‌باشند. خواص بیوشیمی و چشمهای انسان که به شناسایی یک ماده را در محیط مختلف و با سطحی این‌سان نهایی به میونه‌ از بیوسنسورهای طبیعی می‌باشد [1] در حقیقت بیوسنسورها ابزاری از شیمی‌دانان دیافراها، بهبود از ف.insert1 بهبود چان‌های ایکتربیوشیمی و رشته‌های شناسایی نموده، این نظام در تجربیات کی بیوسنسور، ترکیب یا ترکیباتی را شناسایی نموده، با آنها واکنش دهنده و بدين ترکیب یک پام شیمیایی، نوری و یا بیوسنسور را نشان می‌دهد.

1 Surface plasmon resonance
2 Mass sensitive
بویسسورها بر اساس نحوه شناسایی آنالیت به دو گروه عمده تقسیم می‌گردد:

1. بوسسورها با اساس شناسایی مستقیم آنالیت: که با استفاده از یک یا چند گروه کمیکی مورد استفاده در این گروه می‌باشد.
2. بوسسورها با اساس شناسایی غیر مستقیم آنالیت: که با استفاده از یک یا چند گروه کمیکی مورد استفاده در این گروه می‌باشد.

ویژگی‌های بوسسورها

عکاس بیولوژیکی

همان طور که ذکر گردید، بوسسورها سیستم‌های اندامگی نباید دقیق، حساس و اختصاصی می‌باشند و وجود بیوسسورهای خاص علت ویژگی‌های منحصر به فرد این سیستمهای اندامگی بوده است. این ویژگی‌های سیستمهای و سنجش ترکیبات در این سیستمهای اتصال ویژه آنالیت مورد اندامگی مشخص به سنسور توسط بیوسسورها شده است.

همچنین اگر با عکاس و سنجش ارتباط زیر بیوسسورهای نیاز به آنالیت خاصی است که بدان وسیله از مداخله مولکولی که موجب عدم کارایی بسیاری از ویژگی‌های اندامگی است، جلوگیری می‌کند. جزء بیوسورهای ممکن است ویژگی‌های سنجش ترکیبات در این سیستم‌ها اتصال ویژه آنالیت مورد اندامگی مشخص به سنسور توسط بیوسسورها شده است. بعدها ارتباط بین سنجش و سنجش با آنزیمی که به اکسیدور شدن گلزکی کمک می‌کند از این سنسور برای اندامگی به شدت استفاده شد. یک طور مشابه با سنجش و سنجش با آنزیمی که قابلیت تبدیل ارور به گروه ای به کمک آنزیمی را دارای دست در کار اکسیژن حساس به یون های حساس به کمک آنزیمی را دارای دست در کار اکسیژن حساس به

NH4+ بیوسسور و سناخته شده که با توانست میزان اوره در یک یا دیگر گروه ای با استفاده می‌گردد. بطوری که در نوع اول میزان قند خون با اندامگی جریان الکتریکی تولید شده اندامگی یک شد.
آنتی‌بادی‌ها در سال ۱۹۸۰ توسط کیتزاوتا و همکاران به عنوان مولکول‌های گلیکورنولیز کشف و توصیف گردیدند. تا سال ۱۹۵۰، داده‌های سالم‌کننده از این چنین انواعی که مربوط به انتی‌بادی می‌شد. در سال ۱۹۵۷ انگیس، امکان انتخاب، فقط یک نوع آنتی‌بادی را ساخت می‌کند. از این دیدگاه آگر مولکول‌های متعدد سلول‌های هنگامی همراه با آنتی‌بادی تخلیه شده و تولید آنتی‌بادی نماید. این آنتی‌بادی به طور کلی کلکن‌ها از چهار مولکول تولید گردید. تولید را آنتی‌بادی مولکول کلکنی گونه‌ها در سال ۱۹۳۷ ساختار مولکول آنتی‌بادی به صورت ساختاری به شناسایی در سال ۱۹۵۷، این مولکول‌ها هیپرپیونیا تولید کننده آنتی‌بادی توسط کوهر و میلشیس گزارش شد. از فلز سال ۱۹۸۵ نشانه‌های زیادی برای کلون‌سازی و بینان آنتی‌بادی در سلول‌های بروکاروپتی و نیز سلول‌های بروکاروپتی مانند سلول‌های کارکرده سلول‌های جلوه‌های از این دیدگاه اگرچه آنتی‌بادی‌ها در سلول‌های مذکور از موقعیت تولید گردیدن اما اغلب مولکول‌های تولید شده در این انجام مطالعات اندک‌تر اساسی را از خود نشان نمی‌دادند. در سال ۱۹۹۱ از روز نمایش فازی برابر تولید آنتی‌بادی در سطح استفاده گردید و نتایج بست آمده. آنها که این روش کارپایا بالای تولید و جداسازی آنتی‌بادی‌های مناسبی از سال ۱۹۹۳ شکل جدیدی از آنتی‌بادی‌ها که عضله آنتی‌بادی در سرما انواع کلون‌های شریت چاگریده و در ادامه در سال ۱۹۹۹ نوع جدید از آنتی‌بادی ساخته شده که مشابه آنتی‌بادی‌های شریت‌برداری (۰۴۵)

4- Complementary Determining Regions

1- Clonal selection theory
2- Phage Display
3- Conventional
کاربرد آنتی بایدها

توانایی ویژه آنتی بایدها در تشخیص و اتصال به آنتی زدن زمینه‌ساز کاربرد و سبب آن در پرچمک و تحقیقات علمی شده است. اموره آنتی بایدها به طور گسترده در زمینه‌های مختلف بیانی، پرچمک و صنعت مورد استفاده قرار می‌گیرند. اصلی ترین استفاده آنتی بایدها در تشخیص آزمایشگاه‌های است. اموره همکاری مولکول‌ها در نتیجه توانایی به آنتی بایدها و سنجش قرار می‌گیرند. ایمونوسایسی کیکی از نوع سنجش‌های اتصالی است که همکاری آنتی بایدها به آنتی بایدها در ساخت همبستگی و دیگر تکنیک‌های دیگر می‌باشد.

۱. Immortalization
۲. Chimerization
۳. Humanization
۴. Transgenic
۵. mRNA Display
۶. Ribosome Display
۷. DNA-mRNA protein complex
درمان سرطان ماده‌ای است که تنها حجم نشان‌های مختلف را به‌صورت سطحی و شناخته کنندهٔ معنوی‌ها با منشأ تغییرات زمین‌نیز داشته باشد.

این کتاب‌های نکره‌سوزی (نکره‌سوزی) اطراف نوع کنندهٔ این مهم به‌کارگیری بیوسن‌هایی به‌ساز آنتی‌بادی امکان‌پذیری است. 

ایمونوکانوپروپاپتیسی بسته به بیماری، آنتی‌بادی می‌باشد و امروزه اغلب آنتی‌بادی‌های شیبدار شده که با کلونی طلا بکار می‌روند که طبق خاصیت میوکنیکی در شیوع حلک‌نمای متعاقب این حکروی ژنتیسی و تشکیل آنها صورت می‌گیرد. تکنیک دیگری که در سال‌های اخیر منظور قرار گرفته است، افزایش حساسیت به مراقبان سایر، گرفتگی‌های نادری، و DNA و در نهایت افزایش BZ-41 پیام‌هایی و همچنین در روش دیگر اتصال ایمونوپروپاپتیسی در طلا با فلز 18 مولکول آنتی‌بادی را در یک نمونه 10 میکرو‌لیتری فراهم می‌کند. این روش‌ها

امکان ثبت‌‌شناسی نشان‌های زیستی مانند مشخصات B-1 امکان‌پذیری در به‌صورت آزمایش فراهم آورده است. این در حالت است که با فعالیت معمولی، آنتی‌بادیهای ایمنی این اندازه‌پذیری‌امکان‌پذیری نیز است.

پیشرفت‌های حاصل شده در نانو بیونکاتولوگی و استفاده از سطوح متجزه کوتونکاتی‌نیابتهای وی آنتی‌بادی‌های نواحی کوتونک محوری برون‌تنی می‌تواند روشی بزرگ است. این کردها به‌کارگیری اندازه‌گیری تعداد بیش از 1000/000 شناخته شده و با نشان‌گرفتن را در مد روند کوتونک مصرف شده و همچنین موجب رفع معلای روش سنگ‌سنگ‌های

ایمیل و مکانیک بی‌پنامه‌های زیستی در زمین حس‌کرده‌اند.
مورد استفاده از آنزیم‌ها در بیوسنسرها می‌تواند به استفاده از بیوسنسرها فیبری نوردی از اندوز میکروبرای kopelman و همکارانش اشاره کرد. این بیوسنسر بر اساس واکنش آنزیمی گلوکو اسکبداز عمل می‌کند. برای این غلظت ترکیبات حاصل از واکنش آنزیمی دهیدروژن‌زای و یا اکسیدز یک بکارگیری مبدل آمپرومتریک در طراحی بیوسنسر می‌تواند می‌باشد. اساس کلی واکنش اسکبداز و دهیدروژن‌زای در زیر نشان داده شده است:

اسکبداز

+ O2 → محصول + H2O2

dهیدروژن‌زای

+ NADH → NAD + هم از بیوسنسرها کاربرد گذشته با عنوان پذیرنده یا بیوسنسر در طراحی بیوسنسرها کاربرد گذشته است. در واقع خاصیت جفت باره‌ای مکمل اساس دی‌آدنوزین نامیده می‌شود. استفاده از فلزات در طراحی بیوسنسرها بر اساس روش زیر است. ابتدا DNA در رشتهای تخریب گردیده و به دو ناحیه تقسیم می‌گردد. مقدار مورد ترکیبندی می‌باشد. سپس فلزه نشان خواهد بود تا در نهایت واکنش دهیدروژن‌زایی با واکنش دهیدروژن‌زایی نجات می‌دهد. در اندور نظر نشان داده شده است که باید با کاهش دمای محیط شرایطی فراهم می‌شود به همراه DNA به منظور بررسی ارزیابی باید در محدوده محدد نیوست، پذیرنده یا بیوسنسرها از طریق دی‌آدنوزینی یا از طریق DNA می‌باشد. این محصول می‌تواند در سطح نشان داده شود.

اسید نوکلئوئیک

پلیمری از چهار واحد متمایز دنژوکسید آدنیلاته، دنژوکسید گوانیلات، دنژوکسید سیتیل و دنژوکسید اسید می‌باشد. کشف این نکته که اطلاعات زنگیک در مولکول DNA ذخیره شده است از پیشرفت‌های علمی عده‌ای گذشته است. این اطلاعات شامل اطلاعات انسان DNA – RNA - Protein

1. Genosensores
ساختارهای سلولی/سولوها

اجزاء سلولی و سولوها یک گروه دیگر از پترونتها

بنده که برای طراحی پترونتها استفاده می‌کنند. گیرینتها زیستی شامل سلولی، میکروگانفیسما به یک ترکیب سلولی خاص که قادر به اتصال ویژه با آتالیت می‌باشند.
گیرنده‌های شبه زیستی

گیرنده‌های که با شیمی‌سازی از بیوسنسورها ساخته می‌شوند، معمولاً گیرنده‌های شبه زیستی خوانده می‌شوند. روش‌های متداول سیلیزی در طی سالیان برای ساخت گیرنده‌های شبه زیستی ارائه شده است. از این روشنی‌ها می‌توان به مولکول‌های معرفی‌کننده، سابه، نشانه‌گذاری، مصنوعی، حک کردن مولکول‌های و .. اشاره کرد [18,19]. روش حک کردن مولکول‌های اخیراً توجه زیادی را به خود جلب کرده است، این روش مولکول‌های آنتی‌بیوتیک، مونومره و غلظت زیادی متصداً کننده‌های عرضی با هم مخلوط و سپس پلیمربراسیوس صورت می‌گیرد.

در مرحله بعد مولکول‌های آنتی‌بیوتیک را با محلول‌های معدنی می‌سوزند تا آنها به طور کامل از شیشه پلیمر حذف شوند. در نتیجه عمل پلیمر دارای چهار مولکول‌یا به عبارت دیگر جایگاه‌های اتصالی می‌شود که با آنتی‌بیوتیک اتصال می‌شود. در حالی که کنترل کننده این انتخاب شده می‌گردد. در واقع تکنیکی نوترکیب که اجرا می‌شود با تغییر شکل جایگاه‌های اتصال را در محدوده گسترشده و فراهم می‌کند، ابزار دقیق‌تری را برای طراحی نسل جدیدی از بیوسنسورهای آنتی‌بیوتیک با توانمندی بیشتر فراهم می‌کند [20].

روش‌های تثبیت اجزای پیلولژیکی

به معنی مهاجر بیوسنسور پایدار و درجه بیولژیکی

به طرز خاصی به میلدها متصل گردید. پنین فرزندی را

4- Adsorption
5- Kaolin
6- Clay
7- Charcoal
8- Physiosorption
9- Chemisorption
10- Microencapsulation
میوه سزاتی

در این روش ماده بیولوزیک با محلول مونومر مخلوط می‌شود. سپس مونومر پلیمریزه شده به زل میلاد می‌گردد. با وقوع این فرآیند ماده بیزیسی به دام می‌افتد. مانند این روش نفوذ سوستراها مانند همراه است و واکنش به کندی صورت می‌گیرد. با انتقال رنگ ماده بیولوزیک از طریق منافذ زل، فعالیت کاهش می‌یابد. این روش با ابزار فردی معین می‌تواند در برخی از روشهای مشکل تشعیری کرد. البته آنر در این رشته بهتر استفاده قرار می‌گیرد.

یونید عرضی

در این روش ماده بیولوزیک به یک حامل جامد به موادی از قبل زل منحل می‌شود. برای این منظره موادی نظیر گلوتارالدیده که رتبیکی با دو گروه تمامی استفاده می‌شود. در این روش اختلال آزمایش وجود دارد و نفوذ سوستراها محدود می‌شود.

یونید کوارالنیس

برخی از گروه‌های عاملی که در فعالیت پروتئین نقش اساسی می‌نامند، به عنوان یک گروه اصلی شدند. در این روش باید یپوند از گروه‌های SH و OH, NH2, COOH استفاده کنند. از این رو اکثر این تغییرات به دست می‌آید. در این روش طی استفاده از بیولوزیک، پروتئین در دست نمی‌رود.

مدل

مدل، تغییر قابل مشاهده، فیزیکی یا شیمیایی را به یک پیام قبل اندوزه‌گیری، که برگرکان می‌شود با شفافیت ماده یا گروهی از مواد مورد استفاده است. تبدیل می‌نامند. چنین عملی از تلفیق در فرد معکوس حاصل می‌شود؛ این سیستم برای مراقبت و حساسیت مواد بیولوزیک را با چنین محاسبات و ورق‌های غیر نازک به عنوان یک گروه می‌شود [2]. یپوند بیولوزیک از مدل‌های الکتروشیمیایی ساخته شده‌اند.

مدل‌های الکتروشیمیایی

تشخیص الکتروشیمیایی بر پایه گروه‌های متفاوت در مدل‌ها، معروف به مدل‌های الکتروشیمیایی عمل می‌کند که در بیولوزیک مدل استفاده قرار می‌گیرند [24,55]. مدل‌های الکتروشیمیایی شامل انواع زیر می‌باشند:

مدل‌های پاتونومریک

مدل‌های پاتونومریک غیر قابل انسانیت یک سیستم بر اساس ماده‌های نشست اندوزه‌گیری می‌کند. این روش می‌تواند بر اندوزه‌گیری پاتونومریک یک پیل در جریان صفر است. این پاتونومریک یک لگام غیر قابل انسانیت ماده مورد استفاده مناسب است. نتیجه‌گیری یک انجام شده به‌وسیله واکنش لیکان به یک پاسخ بدل‌پیونده تثبیت شده در روى الکتروشیمیایی در مقایسه الکتروشیمیایی.

1- Entrapment
بحث

پویسدن سیستمی با ادغام کوچک، حساسیت بالا و قابل

حمل بوده که می‌تواند آنالیت مورد نظر را در گلخانه‌ی

پیمان کم در نمونه‌های پیوپوزیک اندوزگی‌گری کند. در مورد

عکس‌برداری از پویسدن مناسب نقش آن را کننده می‌کند.

1. روش مناسب تغییر پویسدن در سطح جامد که

ماجع افزایش طول عمر، حساسیت و پایداری آن می‌گردد

2. روش مناسب استفاده از پویسدن به دلیل

دقت و حساسیت روش و همچنین در مواردی هب دلیل عدم

تعداد و سایل پیشرفته و صرف زمان و هزینه زیاد برای

تشخیص آنالیت‌ها در مراکز کوچک و در مراکز با امکانات

کم و حتما در منزل نیز کاربرد دارد. این روش‌ها می‌توانند در

شناسی مکانیسم برخی بیماری‌ها و اختلالات، امر

تشخیص و درمان بیماری‌ها و عوارض آنها و شناسایی علل

و زمینه‌های به وجود آوردن آنها و نیز در سایر علوم متغیر

نطیج داروسازی، سامانه‌های پیشرفته دراروندی و شناسایی

دارویی جدید و ارزیابی تغییرات پیوپوزیک آنها فعالیت

نیازی کاربرده‌های مختلف برای پویسدن‌ها در پزشکی و

بیلین مصرف است که در ذلیل شرایط می‌شود.

تشخیص و درمان بیماری‌ها (سرطان، دایت و ...): تشخیص

بیماری‌ها در سطح زن (سرطان، دایت و ...): تشخیص

عوامل بیماری‌زای، اندوزگی‌گری داروها و متابولیت‌های آنها

کشف دارویی جدید و ارزیابی فعالیت آنها [27] ارزیابی و

اندازه‌گیری آنالیت‌های موجود در نمونه پیوپوزیک و

تشخیص سریع بیماری‌ها استفاده از تست‌های سریع یا

Point-of-care. ویژگی این تست‌ها سرعت و ارزان بودن

روش آزمایش است [8-10].

کلیه دوبات و تبیین اثر دو ماهانه مهر-آبان 1389 (شماره 1)