چابزیستی اعضا بدن: از رؤیای علمی تا فناوری رو به رشد

حسین فخرزاده*، باقر لاریجانی

واژگان کلیدی: مورفولوژی، چابزیستی، طراحی و الگوسازی سریع

چکیده

رفتار مجموعه سلول ها یا فلکهای یکچندین میکرو نیرو و فشارهای آب است. در شرایط ایجاد آن از این پدیده می توان (RPT: Rapid Prototyping Technology) در ساخت این ها به شکل مشخص استفاده کرد. کاربرد فناوری طراحی و الگوسازی سریع در مهندسی بافت منجر به مدل آماده جابزیستی جدید چابزیستی شده است که پتانسیل بالایی در توسعه ساخت اعضا بدن در آینده خواهد داشت.

*نشانی: تهران، خیابان کارگر شمالی، بیمارستان دکتر شریعتی، طبقه پنجم، مرکز تحقیقات گد درون ریز و متابولیسم: تلفن: 021-88249988، پست الکترونیک: emrc@tums.ac.ir

مجله دبیبت و لیبيد ایران، شماره ۱(شماره ۱۳۸۶)، دوره ۷-۵ (سپتامبر ۱۳۸۶)
منجر به تشکیل ساختارهای پیچیده‌ای اعضا می‌شود. اگرچه
این پیدا، حت‌ال名列前 دنکت قارچ‌ها فُرق می‌گیرد. بنابراین
همان‌طور که ذکر شد، شیوه‌های Drosophila گوناگونی از
فعالیت‌های نهایی می‌تواند بهبود یابد. 

مقدمه

یکصد سال قبل، ریستورنس در دریایی هنری ویلسون به
مطالعات کلاسیک خون داد که تکه‌های جدا از هم
افستیج‌های دریایی می‌توانند به یکدیگر منحل شده و
مجدداً افستیج کامل اولیه را بزاسازی کنند.[1] در
سال 1964، مکلولویان در از انتقال و‌کرده‌ای
بعضی از داد که این انواع از محیط و
شکل‌گیری یا موثرترین سلول‌های بخاطر این
همانند حس گرما در انواع نیبی و پیش‌بینی کرده‌اند.[2] در
شتابکارسانی، مبارکیانه‌های دن نمای می‌تواند منحنی در
مرکز قبلاً و به یکدیگر متصل می‌شوند تا به کمک
میزان کشف سطحی که پایان‌ترین هالی است دست داده
می‌گردد. این می‌تواند کمک کند که انزیمی سطحی
در آورد. اگر دو گونه
مابع مانند روغن و آب را به هم مخلوط کنیم، بس از مدتی
روغن و آب در فاصله‌های از هم جدا می‌شود و آب
که چسباند است و کشف سطحی بیشتری درد
روغن که لزغندربت است و کشف سطحی کمتری دارد
محوطه می‌شود (شکل 1). در این وضعیت انتزی سطحی یا
بسیار سطحی نمی‌تواند به احتمال می‌رسد که پایان‌ترین یا
است.[3] در مجموعه سلول‌های غیر مانند در جریان
مورفرزیت با روشی مشابه از یک دیگر تولیدی می‌شود
(شکل 1).

مانی موکولوکی که ریست‌ترکنی را شناسایی می‌کند
در نظر گرفته و در فرضیه اعمال می‌کند. در
توصیف پیش‌بینی و وضع شد. همان‌گونه که این فرضیه
طراحی کنند که از یک مخلوط دارای یک کشف سطحی
مشخص و قابل انتزایی هستند که مشابه آن سلول‌های
شکل‌گیری داده به این می‌گردد (شکل 2).

اندازه کشف سطحی تعدادی از بافت‌های گنجین
بیوسیستمی‌ها و همانندی، مجابی مطالعات تجريبی
اگاهی و drosophila که گونه‌ای روی و
شیوه‌های پایان‌انهای احتمالی‌های بیشتر
[7-8] مورفرزیت به اندازه‌ای خود شکل‌گیری است که

1- Differential Adhesion Hypothesis

جایزی، مولکولی و کاغذیزی

در مهندسی به معنی از زل‌هایی که حاصل مانند
ژنتیکی دانه به عنوان درست استفاده می‌شود و
های مورد نظر روی این دانه از تکه‌های می‌شود.[13]
روی یک تغییر فکتوی ضایعی که در آن در روشنی
با این روش هم‌اکنون و یک است. متشکل‌نگر در پی‌ها
از موارد به دنبال تحریم اعتیاد بهان در اثر تروما،
افتاکورس و عمل دیگر، زمان کافی برای تهیه عضو
جانشینی وجود ندارد. دانشمندان دانشگاه کارولینای جنوبی
سال 2003 روش چپ‌اداعا اما استفاده از فرضیه
استاتبیک یا گذار کردن. ناواری چپ‌اداییستنی یک
منابع است که بافت‌های جنین از لحاظ کمی و کیفی خواص
و ریست‌ترکنی‌ها را دارند.

در فرنی‌دان چپ‌اداعا از مجموعه سلول‌ها به عنوان مربوط و
از زل‌هایی بیشتر مانند هم‌اکنون استفاده می‌کنند
[12] مولکول یک تغییر فکتوی ضایعی معنی‌دار است
(مجموعه
سلول‌های معلوم) با یک نوع رنگ (می‌تواند عناوینی از
سلول‌ها) باشد. به عنوان مثال برای یک بانک گا
رگ خونی از
دست سلول اندیلیوی و عضلانی شاخه استفاده می‌شود.
در این موارد خواص مولکولی‌هایی از دهه شده بر
فلز تیمی کشفیه آرایش صحیح انواع سلول‌ها
فرضیه نسبت به یکدیگر در ساختار نهایی خواهد بود.
الف

شکل ۱- چند فازی کونه‌های سلولی متفاوت از یکدیگر و خود شکل که‌پوشی باید

الف: خودشکل که‌پوشی یافت در اثر انداز درمان ب: مخلوطی از دو کونه سلول‌های CHO که با استفاده از دستکاری رزیک ۵۰ با یکدیگر در کیان

ماده‌که‌پوشین (اواست) مولکول N-cadherin در فاز دارند؛ دانه در مال کش از کنار هم قرار می‌گیرد (چپ). پس از ۱۶ ساعت به شکل نهایی (راست) در می‌آید. سلول‌های چپ‌پوشین (چپ) در مرکز سلول‌هایی که چپ‌پوشین کمتری دارند (چپ) در مال قرار می‌گیرند.

ب

شکل ۲- نحوه چیدمان دو کونه سلول بر اساس پیش‌بینی نظره DAH: مخلوطی از سلول‌های های/پیتن‌پای (چپ) و سلول‌های عصبی همبستگی (راست) چنین جوجه به ترتیب پس از ۲/۱۷ و ۳/۲۳ ساعت از هم دیگر کاملاً متفاوت می‌شوند.

شکل ۳- پیکره اولیه (اردیف بیالا) و نهایی (اردیف بایین) مجموعه سلول‌های CHO در ژل زیست سازگار: در پالت A روایی ژل کم

۵/۱۷ (H و G) ۰/۱۷ (F و E) و در پالت B روایی ژل ابده آل (۵/۱۷ (G و CG-۲/۱۷) و در پالت J و I (۵/۱۷ (G و CG-۲/۱۷) میلی‌کر در بیمار لیتر ابت. هسته سلول ها با ماده فلوروم سانس تشان دار شده و ده‌ها یک (از مجموعه سلول‌های کروی‌هایی) سلول و رفته آن ۳۲۰ امتیاز ایجاد می‌شود.
چپ ساختارهای بیافنی استوآنها

پژوهشگران دانشگاه Clemson برای تخمین بار در سال ۲۰۰۴ توانستند ساختارهای بافتی سطح و استوآنها را با کمک چپ گرهای جهانی شناسانه به چاب برسانند [۱۶]. در شکل ۲ نتایج چاب مجمعه سلول های تخمیری همایش چینی (CHO) از غلظت‌های مختلف تیم‌های حاوی کلاژن نشان داده است. هنگامی که غلظت کلاژن در زلیر (mg/ml) ۱/۷ باشد شرایط مناسبی ایجاد می‌شود که مجمعه‌های سلولی می‌توانند به بالاترین سطح انرژی رشدی و به صورت یک مجمعه گروه واحد در کار هم قرار گیرند. در این حالت زلیر پشتیرین را دارد عینی اجازه می‌دهد که مجمعه‌های سلولی به راحتی در آن حرکت کنند و شکل ثابتی را پیکارند [۱۷].

قبل نشان داده شده است که سلول‌ها در طول فیبرهای کلاژن می‌توانند با خزندگی تغییر مکان‌ها راه بیاید و هرچه غلظت کلاژن در زلیر بالای‌تر باشد، این نتایج خش با بیشتر ۱/۷ باشد خش با بیشتر ۱/۷ باشد.

احجام غلظت‌های کلاژن در زلیر (mg/ml) ۱/۷ به‌طور مثالی برای یک حلقه با صفک در کار هم قرار گیرند. پژوهشگران یا چاب ایجاد که لایه این سلول‌ها می‌توانند یک بیافنی ساختارهای استوآنها در سطح کنند. این روش قابلیت ایجاد یک زیر با بخشی از لوله گویارش را نشان می‌دهد. در شکل ۲ نشان داده شده است که به دنبال چپ چندین لایه از حلقه‌های سلولی (هر حلقه حاوی ۱۰ مجموعه سلولی) بر روی محیط مناسبی زلیر، یک لوله ایجاد می‌شود. بنابراین می‌شود.

شکل ۲: نمایش شماره‌گیری فناوری چاب ایجاد: قرار دادن لایه به لایه مجمعه‌های سلولی در زلیر چسبانی و سپس اتصال

چاب چاب

۲- Rapid Prototyping Technology

مجمعه‌ای از تکنولوژی‌های مربوط که در آن ها می‌توانند ساخت مصالح مناسب و احساس فیبریکی پیدا کنند از طریق‌های ساختاری ای که استفاده می‌شود در نیاز از استفاده فناوری‌های روzi به صورت لایه به لایه بر روی مقرار می‌شود تا مخلوط‌های مختلف استفاده شود.

۱ Chinese Hamster Ovary cells
با پیشرفت هایی که در فناوری این چاب گزرا، صورت می‌گیرد، در سال‌های اخیر، نانو‌متریک‌های توانایی ساختار برنامه‌ریزی شده، های مختلفی که کمپین و قابلیت‌های بی‌حده بود.

یکی از جانشین های مهم‌ترین بافت‌های تأمین جریان خون کافی در درمان افزایش حیات و بالینی سلول‌های در بافت‌های بیماری‌زا شده است. یکی از بسیار مهم‌ترین چاب‌های زیستی است که در آنجا مکانیسم‌هایی بطور بلافاصله برای تأمین جریان خون ساختارهای بافتی به‌عنوان تعیین‌شده است. [۲۳]

نتیجه‌گیری

دانش‌نامه اخیر‌تر نشان داده‌اند که چاب‌های زیستی، عضای بدن‌ها ساخته‌ای به‌علاوه بافت‌های بالاترین یک دانشگاه طبیعی به‌کار برده شده است. (۲۱) اگرچه این فناوری‌ها به شدت از حالت‌های سخت در این حالت به رشد می‌باشد و دچار سیاست‌های طبیعی آبی‌ایانگان اصلی بیشتر او را به‌منظور یک ماده معمول می‌باشد. در حال حاضر، به نظر می‌رسد این ماده معمول می‌باشد که در دانشگاه ساختاری است. و دانسته علمی - تخیلی مقدار دریافت سال سامان‌ها. آب‌سیزه ریگرازی از واقعیت به‌خود می‌گیرد.

نیاید فراموش کرد که اولین هواپیمای ساختارهای بشر توسط راداران رایت ۳ دقیقه قرار گرفت و سپس بود ولی امروز جهانی غولپیکر مهم ترین ابر‌ساخته در مسافت‌های طولانی‌ماند. به همین ترتیب با توجه به نزد فازهای بیماران با عضای جایگزین و کمبود شدید آنها (مانند پانکراتیس در دیابت‌ها، قلب در مبتلاان به کاردیومیوپاتی، کلیه در نارسایی پریش‌های کلیو) شرپی‌پری می‌شود در قرن بیست و یکم چاب گزرا سلول و زیستی پیشرفت به عنوان مهم‌ترین ابر‌مانندی بافت سلول‌های Viscoelastic گرفته است. [۲۰] در این فناوری با یک دانشگاه رایانه ای مواد زیستی شانس سلول‌ها و ماتریکس بین سلول‌های را با یک‌دست بر روی هم جایگزین می‌کنند تا در نهایت یک بافت مورد استفاده درست شود.

روند چاب اعضای شده سرحال متوالی است که عبارت‌دیده در مرحله پیشرفت فناوری طرح گردش‌هایی عضو مورد نظر با شیب و دلایل طراحی می‌باشد. به همین ترتیب می‌توان از توصیف‌های زیستی آن عضو خاص MRI یا CT به نهایت شده‌ای از مدل‌های رایانه‌ای کمک می‌گیرند.[۲۱]

امروزه اگرچه پیشرفت‌های فناوری در فناوری‌های تصورپردازی بالاترین صورت گرفته است با این حال هنوز قادر به کنکاری این تکنیک ها به هدف تبدیل‌های است که توزیع دقیق اجزای مشخص دهنده را در مقياس سلولی و منشی‌های تنسوری را با دانسته علمی - تخیلی مقدار دریافت سال سامان‌ها. سیزه ریگرازی از واقعیت به‌خود می‌گیرد.

در مرحله ویژه فناوری چاب رایانه‌ای به‌صرفه می‌باشد که به‌علاوه بافت به‌صورت‌های خاص بافت‌هایی که در این مرحله تولید می‌شوند هنوز قابل‌پشتی عمل نمی‌کنند.

در مرحله پن سلولی ساختارهای ایجادشده در ناتوان کارکرد گردای سامان‌ها به شرایط زیست‌مکانیک بدن و فوت داده می‌شود.

در سال ۲۰۰۳، ویلسون و بولاند از دانشگاه Zیستی دانشگاه کلیسی برای ایجاد تغییرات در چاب گزرا Cannon بسیار جدید بود. [۲۲] همچنین معمول (۲۲) Cannon به نام دانشگاه کلیسی با ایجاد تغییرات در چاب گزرا Cannon بسیار جدید بود.
گواهی، فناوری چاپ زیستی در ایران

همانگونه که یکی از حاضرین این فناوری بیماری چاپ زیستی است، در این جلسه به بررسی و به‌طور خلاصه بررسی و تدوین واژه‌های جدید برای درک و تبیین معناانِ این تکنیک، یکی از این حال از آنجا که تجربه توسعه کشورها در سده‌های اخیر نشان داده که بهترین راه انتقال هر فناوری، پژوهش پیشگام

طرح اجمالی

کاربردهای گسترده و فراگیری در تهیه اعضا مورد نیاز بیماران پیدا و خواهند کرد.


