اثر نارنجین و کوئرستین بر اکسیداسیون

LDL از طریق تأثیرشان در اتصال مس به

محيط آزمایشگاهی (In Vitro)

سید محمد علی غفاری 1, طبه قیاسوند 1

چکیده

مقدمه: اکسیداسیون الپرپوئیتن (LDL) احتمالاً نقش مهمی در ایجاد آرتروز بارزی می‌نماید. شناخت سازوکار اکسیداسیون LDL و عواملی که موجب حساسیت آن به این فرآیند می‌شوند هنوز کاملاً نمی‌باشد. بنابراین به عنوان یکی از عوامل دخالت کننده در اکسیداسیون LDL، آتروسکلروز معرفی شده و تصور بر آن است که اتصال پپتیدیل نمایه مس به LDL از نظر لازم برای این اکسیداسیون است. بنابراین هدف این مطالعه بررسی تاثیر در فلورونیت نارنجین و کوئرستین در RL

روی اتصال مس به LDL و نارنجین اکسیداسیون LDL یک مطالعه از پلاسمای محیطی LDL توسط اکسیداسیون اثر آتشفشانی می‌گردد. اکسیداسیون LDL توسط EDTA محتوی اکسیداسیون اثر آتشفشانی می‌گردد. اکسیداسیون LDL توسط اکسیداسیون اثر آتشفشانی می‌گردد.

روش‌ها: این مطالعه نشان داد که نارنجین تنشکل LDL و کمپلکس مس-LDL RA به نحوی که کوئرستین و TBARS نشاود LDL کمک می‌کند. اکسیداسیون LDL موجب تنشکل LDL و کمپلکس مس-LDL شود. می‌تواند این نتیجه گیری شود که نارنجین با ماهی اتصال مس به LDL ممکن است حساسیت این الپرپوئیتن را به اکسیداسیون در مقابل مس کاهش دهد و به این طریق احتمالاً در پیشگیری از عوارض آتروسکلروز نقش دارد، در حالی که کوئرستین با تحریک اتصال مس به LDL احتمالاً موجب افزایش حساسیت LDL به اکسیداسیون شده و بدین طریق ممکن است موجب پیشرفت اکسیداسیون LDL شود.

واژگان کلیدی: الپرپوئیتن با دانه‌های نارنجی، نارنجین، کوئرستین، مس

1-گروه بیوشیمی، دانشکده پزشکی، دانشگاه علوم پزشکی جنوبی شاپور اهواز

* نشانی‌گرجه بیوشیمی، دانشکده پزشکی، دانشگاه علوم پزشکی جنوبی شاپور اهواز، پست الکترونیک: ghaffarima@yahoo.com

تاریخ دریافت: 89/2/10
تاریخ پذیرش: 89/8/10
مقادیر

لیپروپتین‌ها با دانسیتی بالایی (LDL) و دارای این‌چهارگوش و یکی از این‌چهارگوش که LDL در اثر افزایش حسی بیشتری آن و LDL از گردیدن متفاوت می‌شود.

روش‌ها

کوئرانتین، ایالین دی آمین نت‌نا استیک اسید (EDTA) و فسفاتس و فسفاتس که از شرکت سیما (آمریکا) به‌دست آمده که در این‌چهارگوش، نارنجی، آگار، نمایی با استفاده از همیشه سفید، دریافت و پاسیف‌سازی، روبروی بیشتری و بالا و مصرف‌گر در حضور فعالیت‌های بالینی ایرانی‌ها را در شرکت مرکز آکسفان (ایرانی‌ها) مرکز ارجاع‌های تهیه‌گر و محلول مس از محلول دی‌زمان آزمایش تهیه‌گر و محلول مس از محلول دی‌ژن‌گر دی‌ژن‌گر.

1- جداسازی از پلاستی انان

این طریقی است که همه‌ها، سری‌سازی، کلر و مواد در خانه ای، در این‌چهارگوش، نارنجی، آگار، نمایی با استفاده از همیشه سفید، دریافت و پاسیف‌سازی، روبروی بیشتری و بالا و مصرف‌گر در حضور فعالیت‌های بالینی ایرانی‌ها را در شرکت مرکز آکسفان (ایرانی‌ها) مرکز ارجاع‌های تهیه‌گر و محلول مس از محلول دی‌ژن‌گر دی‌ژن‌گر.

1- Foam cells
2- Fatty streak
3- Fibrous plaques
4- Complicated lesions
3- اثر کوتروستین و تارقین بر LDL اکسیداسیون

بررسی اثر کلرید تارقین و کوتروستین بر LDL اکسیداسیون طی مصرف این مخلوط شد. در محتوای LDL 8.wl آزمایش نموده و به هر یک 50µM (200 µl) کوتروستین و 200 µl مدل سولفوكسانید (200 µl) اضافه شد. کوتروستین در مدل سولفوكسانید 10% به توسط بافر (PH=7/4) برای 30 دقیقه در مخلوط Lag بسته شد. بعد از مدت زمان مورد نظر قطرات شد. در مدت 37°C قرار گرفت.

در مدت 1 ساعت از مخلوط MRI شد. شرایط روش ذکر شده بود. نتایج این مطالعه نشان داد که اکسیداسیون LDL در مدت 37°C مطالعه نشان داد که اکسیداسیون LDL در مدت 37°C مطلوب برای تغییر جامد به 3/70 درصد میزان مورد نظر گرده می‌باشد. مطالعه نشان داد که اکسیداسیون LDL بسته شده در مدت 37°C میزان مورد نظر گرده می‌باشد.
ساعت در دمای 37°C انکوبه گردید. سپس محلول مس (50 μM) به آن افزوده شد و مجدداً برای مدت 3 ساعت در 37°C انکوبه گردید. در پی مرحله عمل کروماتوگرافی نمونه ها بیرون دیالیز و در مرحله بعد کروماتوگرافی پس از دیالیز نمونه ها (در مقابل بافر فسفات در مدت 24 ساعت در دمای 37°C) انجام شد و سپس مقادیر پروتئین و مس هر نمونه مورد انرژی فشار گرفت.

هر داده معرف سبب انتقال گیری مستقل بوده که به صورت Mean ±SD نشان داده شده است.

اینها

در این مطالعه گلزینی لیپیدی در هر مرحله استخراج مورد ارزیابی قرار گرفت. (جدول 1). علاوه بر این جداسازی توسط الکتروفورز، نمونه های میانه مرحله دو استخراج روز ژل آگز نیز تا حد شد (شکل 1). نتایج حاصل از انکوباسیون 50 μgprotein/ml LDL با غلظت های مختلف مس (0-100 μM) در دمای 37°C به مدت 3 ساعت نشان داد که مس قادئ به اکسیداسیون بوده که شدت این اکسیداسیون وابسته به غلظت مس موجود در محیط است. (شکل 1 و 2). مطالعه اثر اکسیداسیون توسط مس در غیاب LDL در حجم های LDL شده با (1/5) میلی‌گرم در حضور 10 mM (1) نکار کردن، به طوری که در اینجا LDL با 1 (1) به آن افزوده شد [20].

جدول 1: مقایسه غلظت لیپید در پلاسمای نمونه استخراج شده LDL

<table>
<thead>
<tr>
<th>استخراج شده</th>
<th>پلاسمای</th>
<th>لیپید*</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلسترول</td>
<td>520±1/9</td>
<td>198±1/6</td>
</tr>
<tr>
<td>نری کلسترول</td>
<td>875±8</td>
<td>900±9</td>
</tr>
<tr>
<td>کلسترول</td>
<td>151±1/7</td>
<td>151±1/7</td>
</tr>
<tr>
<td>کلسترول</td>
<td>895±5</td>
<td>895±5</td>
</tr>
</tbody>
</table>

* مقایسه غلظت لیپید با استخراج گیری مس که به صورت Mean ±SD نشان داده شده است. واحد همه مقادیر mg/dl.
شکل ۱- حركة الکتروفورزی محلول LDL (۲/۱) و پلاسماس (۲/۳) روی زل آکارز/۸ درصد.
لیپورتین با دانسیتی پایین، VLDL = لیپورتین با دانسیتی خیلی پایین، HDL = لیپورتین با دانسیتی بالا.

شکل ۲- (A) اثر غلظت های مختلف مس (۰—۵۰ μM) روی اکسیداسیون LDL (۵۰ μg protein/ml LDL) نارینجین ۱۰ میکرومولار (■)، ۵۰ میکرومولار (▲) و ۱۰۰ میکرومولار (○).
(B) اثر غلظت های مختلف نارینجین (۱۰—۱۰۰ μM) روی اکسیداسیون VLDL (۵۰ μg protein/ml VLDL) توسط نارینجین. نتایج به صورت میانگین ± انحراف معیار و حضور و غیاب نارینجین نشان داده شده‌اند.
نتایج حاصل از زل فیتراسیون mg protein/ml LDL و حضور 50، 100 میکرومولار نارنجی و یا کورسینین مشخص نمود که حضور نارنجی موجب Thiobarbitoric Reactive Substances کاهش تشكل (TBARS) می‌شود (شکل ۲A) که شدت کاهش نیز باشته به غلظت نارنجی به کار رفته است (شکل ۲B). در حالت که حضور کورسینین نه نمای موجب کاهش TBARS نمی‌شود بلکه در افزایش تشكل نیز می‌تواند (شکل ۲B) به طوری که افزایش غلظت کورسینین میزان تولید RA افزایش می‌دهد (شکل ۳B).

![Graph A](image1.png)

A

![Graph B](image2.png)

B

شکل ۳- (A) گروه غلظت متفاوت مولار (50-100 μM) روي اکسپیداسیون و حضور کورسینین 10 میکرومولار (■) و 50 میکرومولار (○) و 100 میکرومولار (▲) (B) گروه غلظت متفاوت کورسینین (10-100 μM) روي اکسپیداسیون (50 μg protein/ml LDL توسط مولار (100 μM) شکل است. هر نقطه معرف می‌باشد که میان مدل است که به صورت Mean ±SD مشخص شده است.
شکل 2- زل فیلتراسیون‌های LDL اکسید شده با مس در غیاب (A) و حضور نارنجین (B) و کونسپتین (C).

کرده (A) و سپس در مقابل بافت فسفات نمکی (PH 7.4) برای 24 ساعت در دمای 37 درجه سانتی‌گراد دیالیز شد (▲). نمونه‌ها توسط بافر فسفات نمکی (PH 7.4) رفته شدند (به سبب حجم 1.5 میلی‌لیتر را روی سینتی‌سیکلس و G25mm (قیار داده شد و توسط بافر فسفات نمکی شده از گردید. فراکشن‌ها در طی حجم 2 میلی‌لیتر جمع آوری شدند. و مقدار مس (▲) و پروتئین (□) هر فراکشن مورد سنجش قرار گرفت.

سرعت جریان با فاصله استون = 1 میلی‌لیتر بر دقیقه.
یک پروتئین B اکسیداسیون LDL توسط مکارفازها و در نتیجه تشکیل سولهای کف آمونیاک و بروز اکسیداسیون LDL خودکار قابلیت تولید های تئوریکی توده‌های تازه پدیده‌ای که برونتین نیز وجود دارد، مشاهده می‌گردد. در حالی که در کناره‌ای دیالیز، میزان افزایش خاصی ناشاهد می‌شود. حضور فلورونیدهای قابل قبول از کونسیمین LDL با موجب افزایش فلورونیدهای اکسیداسیون LDL و آتوماسکلروز و نقص فلورونیدهای LDL از جمله مانند یک حساسیت مشخص شده است سازوارهای LDL و همچنین عواملی که حساسیت باعث اکسیداسیون می‌شود. این یک دانش‌نامه نشان‌دهنده نشده‌اند. شکل ۵-اثر نارنجین (۱ mM) و کونسیمین (۱ mM) بر اتصال مس به LDL.

بحث

واحدهای زیادی وجود دارد که نشان می‌دهد، اکسیداسیون LDH نیز مهمی را در فرآیند ایجاد اکسیداسیون نشان می‌دهد. اکسیداسیون LDH باعث رشد افزایش می‌شود. شکل ۶-اثر نارنجین (۱ mM) و کونسیمین (۱ mM) بر حساسیت LDH.
2Cu^{2+} + Flavonoid-OH → 2Cu^{2+} + Flavonoid + O + H^+
Cu^+ + O_2 → 2CuO
Cu^2+ + CuO_2 + 2H^+ → 2Cu^2+ + H_2O
Target-Cu^2+ + complex + H_2O_2 → target-Cu^2+ + OH + OH
Target-Cu^{2+} + OH → damage target + Cu^{2+}

یون های فلوری اکسیدیراکسیدرایکیک امکان جدیدی دارند با طوری که موجب تجزیه مولکول‌های دریابی اورژانس با پروتئین‌های مورد حساب قرار گرفته‌اند. محققان پروتئین بالقوه‌های اکسیدونوژنیکی را مورد حساسیت شده‌اند. در این مطالعه از لیپورژنیک ذکر کرده که اکثر یون‌های LDL مبتنی بر مقدار تغییر که از اکسیداز فلورینیک - با کناره‌های احتمال دریابی اورژانس در این مطالعه دیده می‌شود که شاخص بالقوه‌های اکسیدونوژنیکی را مورد حساسیت شده‌اند. در این مطالعه از لیپورژنیک ذکر کرده که اکثر یون‌های LDL مبتنی بر مقدار تغییر که از اکسیداز فلورینیک - با کناره‌های احتمال دریابی اورژانس در این مطالعه دیده می‌شود که

1- Alkoxyl
2- Peroxyl

31

مجله دیابت و تبیب ایران 1386، شماره 17 (دوره 25)

