طراحی ایمونوسنسور الکتروشیمیایی جهت تشخیص آلومین ادراز با استفاده از نانوذرات مغناطیسی به عنوان نشان

چکیده

مقدمه: طراحی روشهای سنجشی با دقت و حساسیت بالا در تشخیص زودهنگام بسیاری از بیماری‌ها کمک زیادی می‌کند. در این راستا ایمونوسنسورهای الکتروشیمیایی که با استفاده از روشهای الکتروشیمیایی و براساس سایگال حاصل از سیال‌سنجی‌های آنالوژ-آنالوژ قادیر به شناسایی سیار می‌باشدند. در این مطالعه، یک روش الکتروشیمیایی سریع مبتنی بر ایمونوسنسورها با استفاده از نانوذرات مغناطیسی با ساختار هسته-پوسته/پوسته برای سنجش میزان آلومین (HAS) ادراز طراحی شده است.

روش‌ها: ابتدا نانوذرات آکسید آهن/کینوژان/طلای (Fe3O4/Chitosan/Au) مورد سنجش قرار گرفت. سپس آنلایندی مولکول‌الیاژ آلومین و نانوذرات مغناطیسی با تجمع نانوذرات طلا بر روی سطح آلومین انرژی کوتوزگه (Ab-MnGs) مورد استفاده قرار گرفت. سنجد مورد استفاده از این تحقیق الکتروشیمیایی کربن نانوذرات SPAEs (Screen Printed Carbon Electrode) بوده که براساس نوع سنجش رفتابی طراحی شده، آنلایندی به همراه باریک پلی وینیل الکل (PVA) در سطح آنها ثابت می‌گردد.

پایان‌های: اجرای آزمایشات نانوذرات سنجد شده توسط تکنیک‌های XRD، XPS، VSM و الکتروشیمیایی مورد بررسی قرار گرفت. برای تایید کوتوزگه از روش‌های آنالوژ-آنالوژ الکتروشیمیایی استفاده گردید. به همین با برقراری اتصالات لازم در سطح الکتروشیمیایی و تکمیل مراحل آماده‌سازی ایمونوسنسور، سنجد الکتروشیمیایی شما پنومه، روش‌های الکتروشیمیایی و نانوذرات مغناطیسی (DPV) برای این‌مارکس زنی کمی آنلایندی در نموده است. تحقیق گگی: با طراحی این روشهای آلومین ادراز با حساسیت به مرور نشان‌دهنده برابری می‌باشد قابل انتزاع ویژگی است. کنید این نتایج این مواد مورد برای طراحی دیگر ایمونوسنسورها روزهای نبی وجود دارد.

واژگان کلیدی: ایمونوسنسور، نانوذرات مغناطیسی، آلومین
کمتر انجام آزمایش و سرعت تشخیص بالاتر بکار ردن حجم کمتر آنتی‌ژنات، تحت تاثیر قرار گرفتن توسط عوامل اسکینکوسپریوس (رنگ سنج) از قبیل ترکیبات فلورسان و جذب کندن در محلول‌های حاوی نمونه آراز بودن قابلیت کوکچک‌سازی و تولید انتی‌ژن برتری امزایزه انتخابی الکتروشیمیایی نسبت به روش‌های قديمی ايمونوسنار شده است. همچنین اين ويزیت‌ها اموزن‌سوزرهای الکتروشیمیایی را كنارميديان مناسب برای شرط خاصي كليپتيک و سرعت بيمارى انتخابي با ماکروآگر ويژنتى و بيمارى زيستى و عوامل پوليزكسي اغلب مورد خيلي كمي دارند. بنابراین طراحی روش تشخیص خلي حساس جهت سنجش آنها ضرورت می‌باشد.

با فلورات نانوینده در محیط حاضر، نانوینده Fe3O4 با استفاده از روش هنروری نمک دو و سه سانت مگرند که نه نسبت به هراز بسیار تجربه نانوینده‌ها به کار می‌رود، به استثنای نانوینده‌ها که معمولاً به لیبل جداسازی دریابند که تکنک‌ها به عنوان یک پلیمر مشتق چه در آنتی‌ژن برای بیولوژیک و جداسازی انتخابی مکمل زیستی (آنیون‌یادی از آن) از مخاطر و انتخاب به استفاده از یک کیلولاتور فرآیندترین پروتئین سرم انسان است. حضور آلومن در ادارا مقایسه 200-201 میلی‌گرم در ادار 24 ساعت، 199-202 میکرومگرم در داره از نمونه شناسه و 200-209 میکرومگرم در میلی هر کانالین در نمونه ادار رنگ‌دوم مکروآگروری و بیشتر از مقایسه ذکر شده دهد که مکروآگر میزی در (4) اندارگری آلومن به این دلیل اهمیت است که مکروآگروری شاخص بسیار مهم در پیش‌آگاه بیماری قلی- عروقی، استراتاژی اندولینال عروقی، بیماری کلیه در دیابت و در فشار خون بالا، یک عمل خطر برای بروز ترومباولی و روبی است (4). بنابراین اندارگری آلومن در ادار مشترک امکان کیلیه و بیماری‌های مختلف اهمیت است. روستفا مکاترد سنجش آلومن در میزان پولیژتکسپریوس (رنگ سنج) پیشنهاد مکروآگروری شاخص‌ها و از نمونه ادار این با توجه به اینکه تئوری پیشین بر انتخاب و پیشنهاد این اسکینکوسپریوس از اهمیت ویژه‌ای بروخوردار است (12) در این مطالعه از پلیمر جهت به دام انتخاب آنچه استفاده شد. پلیمر غیر هادی پلی‌پیوتن کلی، امپر و مکاترد طراحی اموزن‌سوزرهای الکتروشیمیایی جهت تشخیص آلومن ادرار با ...
طیف‌سنجی XRD و TEM نشان داد که مولکول‌های Fe6.3Cl2 و Fe4.8Cl3 موجود هستند.

روش‌ها

مورد‌ها

نمونه‌های کلیدی آهن (Fe3+, Fe4+) و هیدروکسی سدیم (NaOH) از آدامس و سولفات (GLA) استفاده می‌شود.

تهیه و خالصسازی آنتی‌بایدی مولکول‌های آلومینی

از آدامس و سولفات طالع موش و سولف می‌باشد. سیال (FCS) و آنتی‌بایدی از آلومینی انتخاب می‌شود. ۱۵۰ میلی‌لیتر (ml) از محلول آنتی‌بایدی در FCS به مولکول‌های آلومینی اضافه می‌شود.

تعداد آنتی‌بایدی تعیین شده از طریق حسیاب‌سنجی XPS اندازه‌گیری می‌شود.

لهجه مولکول‌های آلومینی با روش‌ها و تکنیک‌های شیمیایی و تریالی از دستگاه‌های مورد استفاده در ساخت و ساز، انتخاب و تشخیص مواد شیمیایی استفاده می‌شود.

پیش‌بینی کمک‌ساز آنتی‌بایدی و تجمع زاویه‌های طلا (Fe3O4/Chi/Au) بر سطح آن (Fe3O4) به عنوان هسته به روش هیبرد سویی در حضور باز هیدروکسی سدیم به عنوان عامل احیا کننده تولید گردیدند.

به‌طور کلی، این روش برای اندازه‌گیری مولکول‌های آلومینی و تحقیق در مورد استفاده در تغییرات شیمیایی استفاده می‌شود.
مولي (0.1) را في 100 مل مبيض بدون اكسيزو ربوه في سيس في حضور هيدروكسيد سليم (0 مل) والمرحله واكش وارد کرده تا pH 7.4 بعد حساد 12 برسد. ملحول حسابية را به مل ملد، چند دقیقه استرداد کرد، بعد برای استفاده طولانی مدت اندازه گیری آنها را در الیکتریکی ترناهایل (AMO) و 0.1 M (TMOS) نما کرده که محسوس از هیدروکسید سدیم ملحوله کرده وزن در باشد فهمیده شده و سیس سیا. می‌گردد که نشانگر تنشگیران آناتومی مغناطیسی است.

نمونه از آن آبی‌این م بلندکردن و آناتومی مغناطیسی که در ادامه، فرم و راهکارهای آن برای مقایسه نمود. می‌گردد، و سیس سیانید به توصیف آب توسط آب شده‌است. در سیس ملغو، و پس از بیش از آن مدت، نمونه را به وسیله الیکتریکی مدرسه کرده وزن در باشد فهمیده شده و سیس سیا. می‌گردد که نشانگر تنشگیران آناتومی مغناطیسی است.

نمونه از آن آبی‌این م بلندکردن و آناتومی مغناطیسی که در ادامه، فرم و راهکارهای آن برای مقایسه نمود. می‌گردد، و سیس سیانید به توصیف آب توسط آب شده‌است. در سیس ملغو، و پس از بیش از آن مدت، نمونه را به وسیله الیکتریکی مدرسه کرده وزن در باشد فهمیده شده و سیس سیا. می‌گردد که نشانگر تنشگیران آناتومی مغناطیسی است.

نمونه از آن آبی‌این م بلندکردن و آناتومی مغناطیسی که در ادامه، فرم و راهکارهای آن برای مقایسه نمود. می‌گردد، و سیس سیانید به توصیف آب توسط آب شده‌است. در سیس ملغو، و پس از بیش از آن مدت، نمونه را به وسیله الیکتریکی مدرسه کرده وزن در باشد فهمیده شده و سیس سیا. می‌گردد که نشانگر تنشگیران آناتومی مغناطیسی است.

نمونه از آن آبی‌این م بلندکردن و آناتومی مغناطیسی که در ادامه، فرم و راهکارهای آن برای مقایسه نمود. می‌گردد، و سیس سیانید به توصیف آب توسط آب شده‌است. در سیس ملغو، و پس از بیش از آن مدت، نمونه را به وسیله الیکتریکی مدرسه کرده وزن در باشد فهمیده شده و سیس سیا. می‌گردد که نشانگر تنشگیران آناتومی مغناطیسی است.

نمونه از آن آبی‌این م بلندکردن و آناتومی مغناطیسی که در ادامه، فرم و راهکارهای آن برای مقایسه نمود. می‌گردد، و سیس سیانید به توصیف آب توسط آب شده‌است. در سیس ملغو، و پس از بیش از آن مدت، نمونه را به وسیله الیکتریکی مدرسه کرده وزن در باشد فهمیده شده و سیس سیا. می‌گردد که نشانگر تنشگیران آناتومی مغناطیسی است.

نمونه از آن آبی‌این م بلندکردن و آناتومی مغناطیسی که در ادامه، فرم و راهکارهای آن برای مقایسه نمود. می‌گردد، و سیس سیانید به توصیف آب توسط آب شده‌است. در سیس ملغو، و پس از بیش از آن مدت، نمونه را به وسیله الیکتریکی مدرسه کرده وزن در باشد فهمیده شده و سیس سیا. می‌گردد که نشانگر تنشگیران آناتومی مغناطیسی است.

نمونه از آن آبی‌این م بلندکردن و آناتومی مغناطیسی که در ادامه، فرم و راهکارهای آن برای مقایسه نمود. می‌گردد، و سیس سیانید به توصیف آب توسط آب شده‌است. در سیس ملغو، و پس از بیش از آن مدت، نمونه را به وسیله الیکتریکی مدرسه کرده وزن در باشد فهمیده شده و سیس سیا. می‌گردد که نشانگر تنشگیران آناتومی مغناطیسی است.
یافته‌ها وبحث
هدف از پژوهش، ترکیبی از خواص مفید نانومواد و پلیمر نازیک برای توسعه ایمونوسوربنت کروماتوگرافی از جمله نانوذرات با توجه به بودجه در طلا بر روی گالیکس مکتین با پوشش پلیمر کیتایور به عنوان تنشگر سنتر سد که درایی مریآیی نظر بیشتر سیگما تولید شده، افزایش تمایل آنتی‌زنا باید به یکدیگر و پایداروی بستر این اتصالات می‌باشد. همچنین پلیمر PVA با سازگاری زیستی سبب کاهش اتصالات غیر اختصاصی به منظور اصلاح سطح کروماتو نازیک‌ساز انتقال آنتی‌زنا و در نتیجه افزایش حساسیت سنسور راهبرد جدیدی ارائه کرده است.

بررسی ساخت سنتر نانوذرات مکتین طلا در این مطالعه، نانوذرات مناطقی با استفاده از روش هم‌سوزی، در حضور آمونیاک و گاز نیترزون و شرایط ویژه‌ای مانند یک ترکیب مورفولونی نانوذرات pH ستند گردیدند. مورفولونی نانوذرات ستند شده توسط بررسی میکروسکوپ الکترونی گزاره مشخص گردید که ذرات اکسید آهن تولید شده (TEM) از نظر سایزی کمتر از 12 نانومتر (شکل 2-ABC) و همچنین نانوذرات مکتین طلا با سایز حداکثر 18 نانومتر (شکل 2-A) ستند گردیدند. در حالی که پلیمر نانوذرات مکتین طلا را سایز حداکثر 35-18 نانومتر (شکل 2-B) کستر گردیدند.

اشاره‌گیری الکتروشیمیایی
پس از اصلاح کروماتو نازیک و قرار دادن آن در سل الکتروشیمیایی، pH 5 از محلول HCl ریخته شد. مطالعه پایه الکترون اصلاح سد توسط وانتری چرخه‌ای (CV) در محلول پتانتسیل -1 تا +1 Volts در سرعت خوانش 50 میلی A سیگنال‌های آنتی‌بکتریال با روش پلاس و منتی‌بریپولار (DPV) برای کلستری نانوذرات نانوذرات

(۲۰۰۰۱۷) PB بای (pH ۷/۴) حاوی ۵۰۰/۵۰۰۰۰ مولفه در دانه. ترکیبات مختلف از طلا و ترکیبات مقاوم در محلول HCl در ناحیه انتقال این الکتروشیمیایی نتایج عالی داشت. همچنین پلیمر کیتایور به عنوان خوانش در محلول HCl در ناحیه انتقال این الکتروشیمیایی نتایج عالی داشت. همچنین پلیمر کیتایور به عنوان خوانش در محلول HCl در ناحیه انتقال این الکتروشیمیایی نتایج عالی داشت. همچنین پلیمر کیتایور به عنوان خوانش در محلول HCl در ناحیه انتقال این الکتروشیمیایی نتایج عالی داشت. همچنین پلیمر کیتایور به عنوان خوانش در محلول HCl در ناحیه انتقال این الکتروشیمیایی نتایج عالی داشت. همچنین پلیمر کیتایور به عنوان خوانش در محلول HCl در ناحیه انتقال این الکتروشیمیایی نتایج عالی داشت. همچنین پلیمر کیتایور به عنوان خوانش در محلول HCl در ناحیه انتقال این الکتروشیمیایی نتایج عالی داشت. همچنین پلیمر کیتایور به عنوان خوانش در محلول HCl در ناحیه انتقال این الکتروشیمیایی نتایج عالی داشت. همچنین پلیمر کیتایور به عنوان خوانش در محلول HCl در ناحیه انتقال این الکتروشیمیایی نتایج عالی داشت. همچنین پلیمر کیتایور به عنوان خوانش در محلول HCl در ناحیه انتقال این الکتروشیمیایی نتایج عالی داشت. همچنین پلیمر کیتایور به عنوان خوانش در محلول HCl در ناحیه انتقال این الکتروشیمیایی نتایج عالی داشت. همچنین پلیمر کیتایور به عنوان خوانش در محلول HCl در ناحیه انتقال این الکتروشیمیایی نتایج عالی داشت. همچنین پلیمر کیتایور به عنوان خوانش در محلول HCl در ناحیه انتقال این الکتروشیمیایی نتایج عالی داشت. همچنین پلیمر کیتایور به عنوان خوانش در محلول HCl در ناحیه انتقال این الکتروشیمیایی نتایج عالی داشت. همچنین پلیمر کیتایور به عنوان خوانش در محلول HCl در ناحیه انتقل
به منظور بررسی ترکیب نمونه‌های نانوذرات آکسید آهن و اکسید آهن-طلا آنالیز XRD انجام گردید. شکل 3 نشان دهنده الگوی پراش برتو ایکس 4 اکسید آهن سنتز شده XRD اکسید آهن سنتز شده می‌باشد. پیک‌های موجود در ۶۳/۱۵، ۶۳/۱۳، ۶۳/۱۲، ۶۷/۴۵، ۷۷/۴۷، ۵۸/۵۰ و ۶۳/۴۷ نشان جهت XRD اکسید سنتز شده نشان دهنده فاز مگنتیک اکسید نانوذرات طلا-آهن و اکسید آهن-طلا در کمپلکس مگنتیت طلا حضور دارد. در نتیجه این محلول نانوذات در محلول نانوذات به آهن و حضور در این محلول می‌باشد. اکسید آهن نانوذات طلا-آهن در سطح اکسید اکسید آهن-طلا مطالعه دیگری که به منظور تایید تشکیل نانوهای سنتز شده انجام گردیده، نشان داد خاصیت پراگماتیکی به حضور

\[\text{Fe}_3\text{O}_4 \]

بدون پوشش برای ۵۵/۶۲ در حالتی که بعد از تجمع نانوذرات طلا-آهن و اکسید آهن-طلا در ۷۷/۱۲ نانوذات سیلیکونی تهیه شد. پایین‌ترین سطح اکسید آهن این میزان کاهش
مگنتیک طلا براساس سیگنال احیا در محیط اسیدی (HCl) می‌باشد. این مطلب حاکی از آن است که خواص مغناطیسی ذرات پس از پوشش در مقایسه با ذرات مغناطیسی بدون پوشش کاهش می‌یابد. دما و مغناطیس اشباع کمپلکس نانو ۲۸/۰.emu/g تخمین زده شد. نتایج مطالعات الکتروشیمی در سنتز الکتروشیمی ذرات طلا موجود در کمپلکس

![شکل ۳ - مربوط به نانوذرات آهن و نانوذرات مگنتیت طلا XRD](ايکس‌دی‌آر‌دی)

اطلاعات الکتروشیمیایی، ویژگی‌های ویژه و سرعت خوانش محدوده پانسوری ۱ تا ۱۰ ولت و سرعت خوانش ۵۰۰ می‌سی وات در اطمینان خوانش مگنتیک طلا آتی‌بایدی علیه آلبومین به آنها وصل می‌گردد. برای این صحت از الکتریکی طراحی شده که هنگامی که نه کوپنگ آتی‌بایدی به سیگنال‌ها تا باید کردن تأیید نشان داد آتی‌بایدی بعد از اتصال مهیا ممکن خود را نسبت به آلبومین حفظ کرده‌اند (جدول ۱).

جدول ۱ - نتایج آزمایش الکتری اتصال آتی‌بایدی به سیگنال مغناطیسی

<table>
<thead>
<tr>
<th>نانوذرات مغناطیسی</th>
<th>کنترل</th>
<th>تست</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skim milk 3%</td>
<td>HSA</td>
<td>Ab-MnGs</td>
</tr>
<tr>
<td>0/377</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
بررسی الکتروشیمیایی ولتامتری چرخهای CV، جهت بررسی پایایی ایمونوسورتر حرارتی طراحی HSA، گره HCl شده استفاده شد. همه اندازه گیری‌ها در حضور یک مولار در محیط پتاسیم 1- تا 1+ ولت و 5 mV/s سرعت خوانش و ولتاژگرامهای چرخهای از الکترود برنه و SPCE به کار گرفته شد. این محققان هیچ یکی در 100 یک واحد PVA با علت از ولتاژگرامهای چرخهای نشان ندادند. عمدتاً به علت CV و PVA انیکه یک پلیمر نارسای است و هیچ یک پلاکس اسپاسی- کاهش در سطح الکترود رخ نمی‌دهد. در صورتی که منحنی اج) یک یکی در 3 ولت را به علت حضور نانوذراه میکنیک طلا-آنیایدی یکی سطح الکترود اصلاح شده ایجاد کرد که به علت اکسپلودنسیون نانوذراه طلا موجود در کمپلکس میکنیک و در ادامه احیای های AuCl3 میکنیک و در ادامه احیای های الکتروشیمیایی ایجاد گردیده است. وجود نانوذراه طلا بر روی هسته میکنیک باعث افزایش یکی کاندی چرخهای CV که به علت قابلیت سراسانی بالا می‌تواند انتقال
روش آنالیتیکالی برای تشخیص آلبومین (HSA)

ایمونوپن‌سور بهینه شده توسط روش الکتروشیمیایی پوزیسیون، برای بررسی سپارسر حاکم در این سنجش شامل تقطیع پتانسیل و سرعت خوانش براساس ایجاد جریان بیشتر آزمایش شده. در ابتدا، پک پانسل نایت (1/3 V) با توجه به اهداف روش در حالات اختیاری (19) در زمان‌های مختلف، از طراحه‌کرای گردید (شکل 6-ج).

بهینه براساس پک جریان کاندی و پانسل پایه پوسنسر گردید. انتخاب گردید (شکل 6-alf). برای انتخاب پتانسیل های بهینه ایمونوسنسر در طیف‌های مختلف پتانسیل از 0 و 1 ولت تا 15/14(0/251/271/3 و آزمایش شد و پانسلی/27 ولت به عنوان پتانسیل بهینه برای بررسی پانسل و تام‌تری تفاضلی ایمونوسنسر انتخاب گردید (شکل 6-ب) و در نهایت در طیف‌های مختلف سرعت خوانش 50 و 100 میلی ولت بر ثانیه 0 و 5 mV/س در نتیجه شدت پک گیوهانی انتخاب گردید (شکل 6-ج).
اساس عملکرد ایمونوسنسر HSA طراحي شده بر پایه Ab-MnG که گرفته شد. که داده این شده با شکل در این شکل 20 mV/s بالاتر از مدل HSA در محدوده 0.37-0.5 V/imped سنجش آنتی‌کرون و عضو آنتی‌کرون از یک مولار گاز-VK که به سطح الکترود پوشیده شده و به ترتیب در این آزمایشات بررسی گردیده. از مولار گاز-VK که به سطح الکترود پوشیده شده و به ترتیب در این آزمایشات بررسی گردیده. از مولار گاز-VK که به سطح الکترود پوشیده شده و به ترتیب در این آزمایشات بررسی گردیده.