بررسی اثر گلی بن کلامید بر ترشح انسلولین و فعالیت گلوکوکیناز در جزایر انگرهاوس
پانکراس موسه‌های صحرایی سالم و دیابتی
محمود خیاطیان 1، باقر لاریجانی 2، بیژن فرزادی 3، شیرین پورنورمحمدی 4، هدی بوشهری 5

چکیده
مقدمه: داروهای سولفونیل اوره تأثیر گلی بن کلامید (گلبوراید) از جنین دهه قبل در درمان دیابت کاربرد داشته اما هنوز ساز و کار دقیق عملکرد مورد بحث است. از سوی دیگر گلوکوکیناز به عنوان حسبر گلوکز در سلول‌های بین پانکراس مطرح بوده و در هموستاتیز گلوکز و ترشح انسلولین نقش کلیدی را ایفا می‌کند. هدف از تحقیق حاضری بررسی تاثیر گلی بن کلامید بر ترشح انسلولین و آنزیم گلوکوکیناز در جزایر انگرهاوس جدا شده از پانکراس موشهای صحرایی بوده است.

روش‌ها: جزایر انگرهاوس با تکنیک هضم کلاراز از موشهای صحرایی سالم و یک مدل تجمیعی از دیابت نوع 2 جداسازی شد. فعالیت انزیمی با انسولین انگرهاوسی برشکل یک فسفات به مکمل تغییرات نشان داده شد. ترکیب انسولینی اثرات این انزیمی بر گلوکوکیناز پانکراس داده شده است. پایان گذاشتن به روش‌ها نشان داد که این ماده ترشح انسلولین یابه (در 2/3 میلی مولار گلوکز) را هم در موشهای دیابتی و هم در موشهای سالم نسبت به کنترل (بدون دارو) افزایش داده است. در حالی که ترکیب انسولین در پاسخ به گلوکز 1/2 میلی مولار افزایش معنی داری برخوردار نبوده است. از سوی دیگر گلی بن کلامید هیچ گونه اثر تحریکی و یا مهاری بر گلوکوکیناز پانکراس چه در موشهای سالم و چه دیابتی نداشت است. اما کاهش فعالیت این آنزیم در موشهای دیابتی دارای تفاوت معنی دار آماری با موشهای سالم بوده است.

نتیجه‌گیری: براساس پایانه‌ها، یک پژوهش می‌توان به قبلاً استنتاج کرد که اثر آبیاس دهنده گلی بن کلامید بر ترشح انسلولین از طریق سازوکاری بیج تأثیر بی‌مقداری بر ترشح انسلولین تحکیم شده با گلوکز می‌باشد و نیز تنظیم فعالیت گلوکوکیناز پانکراس مستقل از گلی بن کلامید است.

واژگان کلیدی: گلی بن کلامید، جزایر پانکراس، جداسازی جزایر، ترشح انسلولین، گلوکوکیناز، موشهای صحرایی nSTZ

دیابتی

1. مرکز تحقیقات زیست پزشکی و گروه بیوشیمی، دانشگاه علوم پزشکی هرمزگان، بندرعباس
2. مرکز تحقیقات خوراکی و منابع پژوهشی، دانشگاه علوم پزشکی تهران
3. گروه بیوشیمی، دانشکده پزشکی، دانشگاه علوم پزشکی تهران
4. مرکز تحقیقات فیزیولوژی و دانشکده داروسازی، دانشگاه علوم پزشکی کرمان

نشانه‌ها: تهبر، خیابان کارگر شمالی، بیمارستان دکتر شریعتی، طبقه چهارم، مرکز تحقیقات غدد درون ریز و متابولیسم، کد emrc@tums.ac.ir

پست الکترونیک: 080.22622990; تلفن: 021-22622990

تاریخ دریافت: 05/02/2020
تاریخ پذیرش: 05/11/2020

85/12/2020

85/12/2020
١٨

مدل حیوانی از موش‌های دیابتی نوع ٢ (nSTZ) مورد گرفتار قرار گرفت.

روش‌ها

hetic سلول‌های اوره نظیر گلی مکلیمید از چندین درمان دیابت کاربرد داشته اند اما هنوز ناشنا نگهداری شده بودند. از این مطالعه قرار گرفتن سلول‌های دیابتی در شرایط ترشح انسولین به گفته سبزیار و گل‌کرکس جزایر لانگرهانس یافت‌گرفت و کاهش گلکوز خون سپس یافته است [١].

از سوی دیگر، رابطه آنژیم گلوکوزیناز (EC 2.7.1.1) با ترشح انسولین از پانکراتوس توسط محققان مختلف مورد مطالعه قرار گرفت از این مطالعه نتایجی به دست آمد که تأثیر این سبزیار نسبت به سبزیار و گل‌کرکس جزایر لانگرهانس یافته است [٣]

جداسازی جزایر پانکراس

جداسازی و تخلیه جزایر لانگرهانس پانکراس به روش لیسی و کانٹنوسکسی (٨) با انتگر تغییرات انجام گرفت. پانکراس (وزن مطلق) با کانال گردن مجزا شده و سرد در ١٥-٢٠ میلی‌لیتر محلول سرد هانکس به فریون و چیده گردید. پانکراس تا سطح شدید به فیلیج به تحالی مترا خرد گردیده و از دو بار با محلول کرپس خواری گلکوز ٢٠ میلی‌میلی‌متری محلول شسته‌شده دادند. سپس جهت هضم فست پانکراس، کلاژئال به محلی اضافه شد. این آزمون در دو حالت انجام شد و میان‌بندی‌گیری سایه گردید به مدت ١٧-١٥ در جهت حلالات نکات شدید بر گوشه داده می‌شد. از دو وسیله محلول کرپس سر در محیط سال‌ها ١٠ درصد اکسترموموسکوبی از همکاری دراسه‌ای دستی‌کرده و دو راه یافته انسولین و شیپه‌کوئینه‌های ویولیا مشاهده گردید و من برای ویولیا های انسولین‌فیزیو گرفته شده و گوشت داده شدند.

انکوباسین استاتیک

پس از قرار دادن ٥ جزیره در هر ویولیا مخصوص انکوباسین، یک میلی‌لیتر محلول کرپس حاوی ٢٨ میلی‌میلی‌متری گلکوز به آنها اضافه شد. ویولیا ها به مدت ٦٠ مین.
(محتوا همة اجزای مورد نیاز واتکش با غلظت مناسب) در ویلایی اندورف ریشه به یادآوری ویژه از اکوپاسیون ویلایی و همگونی به مدت ۹۰ دقیقه در مدت ۳۰ دقیقه ساگی گرگ، با افزودن بیکاری و اکسترسیون ناحیه مورد بررسی و همزمان نحوه تولید محصولات اکوپاسیون بطور کامل برداشت و مجدداً تعداد جزایر شمارش شد. سپس بیش از ۴۸ ساعت در دمای ۳۷ درجه سانتی‌گراد در حجم‌های نسبی ۱ و ۰ میکروولتر با آن اضافه گردید. ویلای ها مجدداً در همان شرایط بیشین به مدت یک ساعت اکسترسیون شدند. در پایان اکوپاسیون، محلول رولی برداشت و در فلز‌سیم تهیه‌گری شد. اندازه‌گیری انسولین در طیق الیزرا و با کیت مخصوص انسولین موش‌سکورپیون (Rat) آزمایش‌های جدید ناشی از DRG شرکت پذیرفت. بیانکه با می‌شود که گلی‌کلایمید در DMSO غلظت نهایی DMSO ۰۷ درصد مردی نیاز به شاید نمی‌آید.

nSTZ آماده‌سازی موش‌های دیابتی

جهت آماده‌سازی یکی از نشانه‌های از دیابت نوع ۲ به موش‌های صحرایی دو روزه استریپتوسنسین (STZ) به میزان ۹۰ میلی‌گرم بر کیلوگرم وزن بندی در طیق داخلی پریناری تزریق گردید (۱۱). به منظور آزمایش دیابتی علاوه بر موش‌های نوزاد، ۳ روز پس از تزریق از قلب آنها خونگیری به عمل آمده. اندازه‌گیری بیولوژی موش‌های دیابتی، موش‌های دیابتی در دارایی نقده خون پالتر از ۱۰۶ میلی‌گرم بر دسی لیتر بودن به عنوان دیابتی در نظر گرفته شدند.

تولید آرماهی

تمامی آزمایش‌ها با صورت درون‌یابی انجام گردیده و مانگین‌ای دو به عنوان یک نقطه در نظر گرفته شده است. همه داده‌ها به صورت مانگین‌سنجی احراز می‌شده است. آزمایش‌های ۶ تا ۸ بار تکرار شده است. داده‌ها به کمک نرم‌افزار SPSS آنالیز گردیده و کمتر از ۰/۰۰٪ به عنوان سطح معنی‌دار آماری در نظر گرفته شد.
نمودار ۱، نتایج حاصل از اثر گلخانه‌های بی‌گروه سولفورئین اوره با یک میلی‌مولار و ۱۰ میلی‌مولار بر ترشح انسولین از جزایر لاغرگرهاس و تیژ بر اثر کلیر کلوکوز پانکراس موش‌های صحرایی سالم و دیابتی اثر داده شد. نتایج به شرح زیر به دست آمد:

نمودار ۲- اثر کلیر کلیز بر ترشح انسولین در موش‌های صحرایی سالم.
بی‌کاتیو گلونکوژن می‌تواند تنظیم مولکول‌های گلکوژن با تندی بالاستری سلول‌های پانکراس در حین ردش موس بارسازی می‌شوند [10] و نابینایان یک مدل مناسب برای بررسی عملکرد پانکراس می‌باشد. دیلیت عمد استفاده از مدل معنی‌دار دیابت جدید بود که تسهیل استرپتوژنوسین (STZ) موجب تکفیر سلول‌های بتای پانکراس در موس های بالغ می‌شود. در گزارش Hinata و همکاران [11]، اظهار شده بود که گلونکوژن MIRB (GMIR) یا گلونکوژن جزایر لاگه‌گرا در حالت آن می‌تواند با تندی بالاستری سلول‌های به آن مربوط است. گلونکوژن triglyceride ATP یا موجب معتدل‌سازی جزایر لاگه‌گرا هم در حالت آن می‌تواند با تندی بالاستری سلول‌های به آن مربوط است. گلونکوژن triglyceride ATP یا موجب معتدل‌سازی جزایر لاگه‌گرا هم در حالت آن می‌تواند با تندی بالاستری سلول‌های به آن مربوط است. گلونکوژن triglyceride ATP یا موجب معتدل‌سازی جزایر لاگه‌گرا هم در حالت آن می‌تواند با تندی بالاستری سلول‌های به آن مربوط است.
علت افزایش ترشح انسولین بیان (پایه) در مسول‌های دیابتی در مقیاس‌های بالای سطحی هنوز دقیقاً معنی‌دار نشده است. حتی این حالت این مسول‌های دیابتی در 90% پانکرئوتومی شده نیز خواهد بود که آن محققان نیز اظهار داده‌اند.

امام ترشح انسولین با واسطه گلکوز (GMIR) در مسول‌های دیابتی در مقیاس‌های بالای سطحی (GMIR) سالم کمتر است (ندوی 1). این تجربه با پیش‌بینی از گزارش‌های انتشار یافته هم‌خوانی دارد؛ که احتمالاً به دلیل آن که مسول‌های دیابتی این نوع مدل حیوانی از دیابت نوع 2 دچار سوء عملکرد سولول‌های با و یا به نفع GMIR تست [27, 30, 22].

برخی دیگر از مدل‌های حیوانی دیابت نوع 2 نیز وضوح مشابه محققان این است [23-26].

نتایج ما نشان می‌دهد که گل‌بکلایمید در غلظت بسیار کم (1 µM) موجب افزایش ترشح انسولین پایه می‌شود در مسول‌های صحرایی سالم و چه در دیابتی می‌شود که این اثر افزایش دهنده گل‌بکلایمید در غلظت بسیار کم موجب ترشح انسولین پایه می‌شود در مسول‌های دیابتی از لحاظ آماری معنی‌دار نبوده است [25]. این یافته با گزارش‌های موجود هم‌خوانی دارد [25]. برخی از مشتق‌های مختلف گلی‌بکلایمید زیر تأثیری بر روژ داده‌اند [17] در گزارش‌های متفاوت و رهبان (GMIR) جزای لاغر‌های را به یاد می‌آورد. 24 ساعت در معرض غلظت بسیار کم می‌تواند فشار داده و سپس مشابه کردنی که در این جزای، ترشح انسولین کاهش می‌یابد.

اما بر اساس نتایج پژوهش حاضر، گل‌بکلایمید می‌تواند با واسطه گلکوز (GMIR) در مسول‌های سالم و چه در دیابتی نیز شکل‌گرفته و این مسول‌های دیابتی در نتیجه اثر گل‌بکلایمید افزایش‌های 15-20% در مشابه می‌شود که این افزایش نتیجه گل‌بکلایمید بر GMIR انسولین نسبت به گروه کنترل از لحاظ آماری معنی‌دار نبوده است [25].

1 Glucose toxicity
همکاران [3] اظهار داشتند که عمل داروهای ATP سولفونیل ایور کاملاً منحصر به فرد کانال‌های نمی‌شود و این ترکیبات ممکن است اثر مستقیمی بر روی ماسین ترشح سلول های با داشته باشد. مشابه این نتایج در آزمایش‌های دیگر نیز به دست آمده [32].

34. Tian YA, Johnson G, Ashcroft SJ. Sulfonylureas enhance exocytosis from pancreatic beta-cells by a mechanism that does not involve direct activation of protein kinase C. Diabetes 1998; 47 :1722-6.

