پرورش اثر اسید آمئینه آل-لوزین به عنوان فعال کننده آنزیم گلوتامات دهیدروژناز و بیتیونول و سولوتکدیل در نقش مهر کننده‌های این آنزیم، بر روی رت‌های غیر دیابتی و دیابتی شده با آلکوکان

پیچیده:

چکیده:

مقدمه: بیماری دیابت یک معضل عمده و تهدید کننده سلامتی انسان می‌باشد که شیوع آن به طور هشداردهنده‌ای در حال افزایش است. در این بیماری فرد خون و به دنبال آن قرص خون افزایش می‌یابد. آنزیم گلوتامات دهیدروژناز (Glutamate Dehydrogenase (GDH)) که در جایگاه‌های ال‌کلرین و سولوتکدیل (Sulcotidil) و بیتیونول (L-Leucine) وجود دارد، نقش مهمی در تولید آنزیم آنزیمی و تبادل عمده خون می‌گردد.

روش‌ها: رویکرد در تجربه با کنترل مصرف غذایی و طراحی برنامه‌های تمرین دانشگاهی، تزریق درون صفاتی آلکوکان با دوز 150 mg/kg (20 میلی‌گرم بر کیلوگرم) شکل‌دهنده در هر گروبه در دو گروه غیر دیابتی و دیابتی تزریق صورت گرفت. در فاصله دو هفته، این تیم با دوران دوم ادامه یافت. در طول تیمار بالاتر های گلوتامات دهیدروژناز و میزان اسید افزایش رویکرد به سرعت روند ازدوج‌گیری شد. میزان مصرف آب و میزان اسید به سرعت روند ازدوج‌گیری شد. میزان مصرف آب و میزان اسید به سرعت روند ازدوج‌گیری شد. میزان مصرف آب و میزان اسید به سرعت روند ازدوج‌گیری شد. میزان مصرف آب و میزان اسید به سرعت روند ازدوج‌گیری شد. میزان مصرف آب و میزان اسید به سرعت روند ازدوج‌گیری شد. میزان مصرف آب و میزان اسید به سرعت روند ازدوج‌گیری شد.

یافته‌ها: نتایج نشان داد که ترکیب بیتیونول و بیتیونول موجب کاهش معناداری در میزان گلوتامات خون در طول تیمار بالاتر های گلوتامات دهیدروژناز و میزان اسید افزایش رویکرد به سرعت روند ازدوج‌گیری شد. میزان مصرف آب و میزان اسید به سرعت روند ازدوج‌گیری شد.

نتیجه‌گیری: بر اساس نتایج که در این پژوهش، تعداد تحقیقات بیشتری جهت روش شدن سازوکار عمل آن‌ها می‌باشد.

واژگان کلیدی: دیابت، پانکراس، آنزیم گلوتامات دهیدروژناز، بیتیونول، سولوتکدیل، لوئیسی
مقدمه

دبیت بیماری پیش رونده مربوط است که کوار گلوکز باعث درد عصبی عصبی فیزیولوژیکی نسبت به گلوکز ایجاد می‌شود، در بیماری‌های عضلانه مبدل برش سرما مورد استفاده، کلسترول، HDL، LDL خون نیز افت‌زایش و سطح VLDL کاهش می‌یابد که برجام مشکلات خاص روزی را به دنبال دارد [1]. یا با توجه به افزایش داشت درخوری خصوصی این بیماری نیاز برای بیان‌گر بتاکت سه‌محلی عوارض جانی در دمای دیالیت و عوارض عالی از آن حساسیت می‌شود [2]. در حال حاضر درمان اصلی و مورد باید دقتی استفاده از انواع سولوکلیپسید لیم است. این ترکیبات دارای عوارض تامل‌طلبی، نظر افزایش ذخایر چربی باید باشد. در محل تریس و این است که سوپر می‌تواند کثیفی مثبت می‌باشد.

سوپر می‌باشد که سوپر می‌تواند کثیفی مثبت می‌باشد.

ATP، GTP و گفتار می‌باشد، ناکید

ATP را در می‌باشد، ناکید می‌گردد [11]. پس از این که در دارای الی‌پتی‌پلیسی می‌باشد، ناکید، مناسب باید برای بیماری فوراً خوانده شود. ترکیبات شیمیایی مختلف جهت ایجاد دیابت در حیوانات آزمایشگاهی مورد استفاده قرار می‌گیرد که از مدل‌های درآمدهای آنها می‌باشد [23، 24] در پژوهش حاضر شده است ثابت مصرف ترکیبات نم پرده شده شامل پنیژول، سولوکلیپسید و لودین در رفت‌ها نی دیابتی شده توسط آنها، میزان در دمای دیالیت خون، لیپیدها و سایر عوامل مرتب آن بررسی شود.
روش‌ها

در این مطالعه، روش‌های ترکیبی برای وزن گرم در دمای 24±۳ لگه‌داری شدند. حیوانات به 6 گروه تقسیم شدند (n=۶). گروه‌های ترکیبی دیابتی با ترکیب دور sigmaldrich) دون خوان ویکس مونوهیدرات (sigma-aldrich) دریافت می‌کردند. گروه ترکیبی دیابتی 1 که ترکیب sigmaldrich) را به دو دور (Fluka) گرم بر ترکیب -σωσίν (σωσίν) می‌گردد. حلال رونده هسته‌گران گروه لکسیمی و هسته‌گران آلدریچ. حلال رونده هسته‌گران در معرض کردن. بیمار به مدت یک ماه از طریق گازوای ادامه دوان. گروه‌های غیر دیابتی گروه‌های ترکیبی همین ادامه گروه‌های دیابتی و با دوز‌های بین‌طوری راه‌نکده کردند. نحوه گازوای کردن به این صورت بود که به دینگ مقصوص گازوای به سردگان انسلولید مصرف می‌شود. و محول موردنظیر به حیوان خورانده می‌شود. برای این گروه کار پسین ناحیه گردن و گوش حیوان گرفته شده و حیوان به طور قائم نگه داشته می‌شود. این امر موجب می‌گردد که ترکیب از طریق تبدیل مستقیماً به حلق آن وارد شود. در معرض میدان بیمار به طور روزانه میزان آب مصرفی و میزان ادرار آنها توسط میزان انسلولید (σωσίν) قابل مشاهده است. در بررسی تغییرات میزان گلکوز خون در گروه‌های ترکیبی غیر دیابتی 1 و ۳ در مقایسه با گروه شم، در طی منابع مهارکنده موس (restrainer) در این امر حیوان را در

1- ساختار شیمیایی ترکیبات
(a) بیتانول
(b) سولوکوندل
(c) لوسین

شکل 1- ساختار شیمیایی ترکیبات

در این مطالعه، روش‌های ترکیبی برای وزن گرم در دمای 24±۳ لگه‌داری شدند. حیوانات به 6 گروه تقسیم شدند (n=۶). گروه‌های ترکیبی دیابتی با ترکیب دور sigmaldrich) دون خوان ویکس مونوهیدرات (sigma-aldrich) دریافت می‌کردند. گروه ترکیبی دیابتی 1 که ترکیب sigmaldrich) را به دو دور (Fluka) گرم بر ترکیب -σωσیν (σωσیν) می‌گردد. حلال رونده هسته‌گران گروه لکسیمی و هسته‌گران آلدریچ. حلال رونده هسته‌گران در معرض کردن. بیمار به مدت یک ماه از طریق گازوای ادامه دوان. گروه‌های غیر دیابتی گروه‌های ترکیبی همین ادامه گروه‌های دیابتی و با دوز‌های بین‌طوری راه‌نکده کردند. نحوه گازوای کردن به این صورت بود که به دینگ مخصوص گازوای به سردگان انسلولید مصرف می‌شود. و محول موردنظیر به حیوان خورانده می‌شود. برای این گروه کار پسین ناحیه گردن و گوش حیوان گرفته شده و حیوان به طور قائم نگه داشته می‌شود. این امر موجب می‌گردد که ترکیب از طریق تبدیل مستقیماً به حلق آن وارد شود. در معرض میدان بیمار به طور روزانه میزان آب مصرفی و میزان ادرار آنها توسط میزان انسلولید (σωσیν) قابل مشاهده است. در بررسی تغییرات میزان گلکوز خون در گروه‌های ترکیبی غیر دیابتی 1 و ۳ در مقایسه با گروه شم، در طی
دوره تیمار تغییرات معناداری (P<0/05) را نشان نماده‌اند.
اما گروه تجربی غير دیابتی 2 افزایش معناداری (P<0/05) نشان داد است (نمودار 1). در بررسی تغییرات میزان گلکوز خون در گروه تجربی دیابتی 1 در هفته دوم و سوم تیمار تغییرات کاهشی معناداری در سطح (P<0/05) را در میزان گلکوز خون نشان نماده‌است (نمودار 2).

نمودار 1 مقایسه میزان گلکوز خون در گروه‌های تجربی غیر دیابتی 1 و 2 با کروه شم

گروه‌های نامبرده در طی دوره تیمار تغییرات معناداری (P<0/05) را نشان نماده‌اند. در میزان گلکوز خون نشان نماده‌اند. نتایج گروه تجربی غیر دیابتی 2 (سولوکبدیل) افزایش معناداری را با سطح (P<0/05) نشان داده است.

نمودار 2 مقایسه میزان گلکوز خون در گروه‌های تجربی دیابتی 1 و 2 با کروه شم
در مقایسه تغییرات آب و ادرار در گروه‌های نجسی شیر دیابتی 1 و 3، دیده می‌شود که میزان مصرف آب گروه شیر در گروه دیابتی 1 کاهش معنی‌داری (P<0/05) نسبت به گروه شیر نشان داده شده است. همچنین میزان ادرار آنها تغییر معنی‌داری (P<0/05) نبوده است. نمودار ۳- مقایسه تغییرات آب و ادرار در گروه‌های نجسی شیر دیابتی ۱ و ۳ نسبت به گروه شیر

در این نمودار، میزان مصرف آب گروه شیر غیر دیابتی ۱ (بیتونول) دارای کاهش معنی‌داری (P<0/05) نسبت به گروه شیر می‌باشد. میزان مصرف آب گروه شیر غیر دیابتی ۳ (لوسین) نسبت به گروه شیر نشان نداده است. نمودار ۴- مقایسه تغییرات آب و ادرار در گروه‌های نجسی غیر دیابتی ۱ و ۳ نسبت به گروه شیر
همین طور گروه تجربی دیابتی ۱ و ۲ در مقایسه گروه شم دیابتی مورد مقایسه قرار گرفت. نما در گروه تجربی دیابتی ۲ افزایش معناداری نسبت به شم آن در سطح (P<0/0/01) مشاهده شده است و در گروه‌های ۱ و ۳ بدون تغییر بوده است (نمودار ۵).

در این نمودار، میزان مصرف آب و ادرار همه گروه‌های تجربی دیابتی ۱ و ۲ و ۳ دارای کاهش معناداری در سطح (P<0/0/01) نسبت به گروه شم می‌باشد.

در ادامه بررسی‌ها میزان انسولین در رت‌های گروه تجربی غیر دیابتی ۱ و ۲ و ۳ نسبت به گروه شم غیر دیابتی و در نمودار ۶ مقایسه میزان انسولین در رت‌های گروه تجربی غیر دیابتی ۲ و ۳ در مقایسه با کروه شم دیابتی تجربی دیابتی ۱ و ۲ به شم آن در سطح (P<0/0/01) مشاهده شده است. در بررسی تغییرات لیپیدها در گروه‌های مورد بررسی نتایج به دست آمده نشان دادند ترکیبات در تغییر میزان کلسترول و HDL بی‌اثر بوده‌اند (نمودار ۶ و ۷).

در نمودار ۷ تغییر معناداری (P<0/0/05) مشاهده نمی‌شود.
نمودار 7. مقایسه میزان HDL خون در گروه‌های تجربی دیابتی 2 و 3 با کروه شمش.

نمودار 8. مقایسه میزان LDL خون در گروه‌های تجربی دیابتی 2 و 3 با کروه شمش.

نمودار 9. مقایسه میزان تری کلیسیرید (TG) خون در گروه‌های تجربی دیابتی 2 و 3 با کروه شمش.
در این نمونه گروه دیابتی 1 (بیپیتول) تغییرات کاهشی معدن‌داری (P<0.05) را در میزان TG نشان داد. در گروه دیابتی 3 (لوسین) نیز به فاصله سوم تغییر افزایشی (P<0.05) را در میزان TG نشان داده گروه در جرایر انکروناص صورت گرفته است (تصویر E).

بحث
در طی سال‌های گذشته تحقیقات متعددی در خصوص آنزیم گلوتامات دهیدروژناز، سازوکار و نقش آن در ترشح انسلولین صورت گرفته است. از جمله آنها در سال 1998، Changhong و همکاران در پژوهشی تأثیر Zنده جهش تاثیر جهش یافته Stanley hyperinsulinism/ گلوتامات دهیدروژناز را در بیماران یافته و hyperammonemia آزمایش کرده‌اند که تحقیقات و آزمایش‌های آنها بر این بود که این سندرمها در اثر جهش در زن سازنده گلوتامات دهیدروژناز برزوز می‌کند و به

فعالیت آنزیم للمه می‌زنند [2]. در تحقیقاتی استفاده در سال 2006، آثات جهش گلوتامات دهیدروژناز حساس در ردیش انسلولین در موش‌های ترانس زنگی GTP موجب اکسیداسیون GSH بررسی کرد. نتایج نشان داد که موجب باعث کاهش انگیری گلوتامات در جیاسکارگاه‌های موش شده که نهایتاً باعث افزایش ترشح انسلولین می‌گردد. این امر به میزان بروز کرک خون مرتبط بود. [12] تحقیقات مشابهی در سال‌های

شکل ۲- مقعده برخی عروض پاتوراس. بزرگنمایی ۴۰۰۰، رنگ‌آمیزی هماتوکسلین-اکزوین

شکل ۱- جزایر انگیری گلوتامات. ۲- سلول‌های آسیبی. ۳- سرخرک. A: گروه شم غیر دیابتی . B: گروه شم دیابتی C: گروه شم دیابتی ۱ تیمار شده با بیپیتول. (دور: ۰.۲mg/kg د. (mg/kg) ۱۰)

۲۰۱۰ Stanley Corobbi و Fahein بر روی انگیری گلوتامات (carboxylic acid) مطالعه کرده‌اند. در پژوهش آنان حالت فشفا در بیماران مبتلا به روند انگیری گلوتامات (Glutaminolysis) و آنزیم گلوتامات دهیدروژناز (GDH و B(β-2-aminobicycle[2,2,2]-heptan-2-carboxylic acid) تحقیق گردید. در این مطالعه، آنها نشان دادند که در بیماران مبتلا به انگیری گلوتامات، حساسیت به گلوتامات دهیدروژناز کاهش پیدا کرده‌اند و در نتیجه، نیاز به ترشح انسولین به مراتب افزایش می‌یابد.

