تأثیر تمرین استقامتی بر بیان زنده میادنلگ سدیم هیدروژن 1 (NHE1) و هم انفعال دهنده سدیم بی کربنات 1 (NBC1) در عضله قلب رهات دیابتی نوع 2

امیر عباس منظمی، حمید رجبی، رضا فرخزادنژاد، مصطفای آریمی، کیارند امیدفر، و حیدر نادری، حمید رضا محمدی مطلق

چکیده
مقدمه: هدف از مطالعه پیش رو تعیین اثر تمرین استقامتی بر بیان زنده میادنلگ سدیم هیدروژن 1 (NHE1) و هم انفعال دهنده سدیم بی کربنات 1 (NBC1) در عضله قلب رهات دیابتی نوع 2 بود.

روش‌ها: تعداد 40 رن تراز ویستار و در سن 4 ماهگی با میانگین وزن 93/7±9/8 کیلوگرم انتخاب و به طور تصادفی به سه گروه کنترل سالم (7 سر رت) کنترل دیابتی (9 سر رت) و تمرینی دیابتی (9 سر رت) تقسیم شدند. دیابت از طریق ترکیب تریک درون مراحل استپوژنوسیز مصرف غذای پرچرب ایجاد و تمرین استقامتی (دوپینگ روی نوار گردان جوندگان) شروع با 20 متر بر دقیقه تدابیری به 30 متر بر دقیقه در هفته اخیر به مدت 7 هفته با گروه تمرینی دیابتی اعمال شد. جهت میان مقاومت استخراج نمونه‌ای از میزان دیابتی انسولین، با استفاده Real time- PCR mRNA از طریق روش HOMA-IR استخراج گردید. 68 ساعت پس از اتمام پروتکل تمرینی، رهت تشخیص و عضلات قلب آنها استخراج شدند. نمونه‌گیری انسولین پلاسمای روش الکتریکی با استفاده میزان بیان زنده مدرسه شده و با هم انفعال NBC1 mRNA (NHE1) mRNA با استفاده REST (permutation test) استفاده گردید. مقدار 6 در نامی مراحل برای 0/05 در نظر گرفته شد.

پایان‌های: یافته‌های تحقیق نشان داد مقدار HOMA-IR INDEX در دو گروه دیابتی نسبت به گروه کنترل سالم بیشتر بود (NHE1 mRNA) (P<0/01). همچنین اختلاف معنی‌دار بین میزان بیان NBC1 mRNA و NHE1 mRNA نسبت به گروه کنترل دیابتی افزایش داشت اما این افزایش معنی‌دار در بین گروه کنترل دیابتی و کنترل سالم (NCE1 mRNA) (P<0/05). همچنین اختلاف معنی‌دار در بین NCE1 mRNA (P<0/05). باقی نشد.

نتیجه‌گیری: در مجموع نتایج تحقیق نشان داد که بیان زنده کنترل دیابتی کاهش قابل ملاحظه‌ای دارد و تمرین استقامتی می‌تواند این کاهش بیان را در گروه تمرینی دیابتی چربان و به سطح نرمال نزدیک کند.

واژگان کلیدی: تیمارهای سلولی، تمرین استقامتی، میادنلگ سدیم هیدروژن، هم انفعال دهنده سدیم بی کربنات 1

1- دانشگاه رازی کرمانشاه
2- دانشگاه تربیت معلم تهران
3- دانشگاه تبریز
4- مرکز تحقیقات دندانپزشکی نهال
5- دانشگاه پایتخت
6- مرکز تحقیقات پزشکی مشهد
7- نوشته: کرمانشاه، غرب ایران، دانشگاه رازی، دانشکده تربیت بدنی و علوم ورزشی، تلفن: 021-9667620، پست الکترونیک: monazzami.amirabbas@gmail.com

تاریخ دریافت: 1391/06/15
تاریخ درخواست اصلاح: 1391/07/11
تاریخ پذیرش: 1391/07/19

123-153

1291: دوره 12 (شماره 4)
2. Monocarboxilate Cotransporter
3. Na⁺/HCO₃ Cotransporter
4. Na⁺/H⁺ Cotransporter
فقط بر روی روش‌های انجم گرفت نشان داده شد که تمرین‌ها در حیث تقویت ایمنی بدن و مهارات در مورد (MCT1) mRNA عضلات اسکلتی اکسیداتور موجب افزایش می‌شود. [19] در تحقیق دیگر MCT1 اثر تمرینات قدرت بر محتوی پروتئینی و MCT4 عضلات اسکلتی راه دادن با نژاد در شبکه و تمرین در مورد افزایش قدرت ماه ماهیان از نوع باشند. مهارت NHE1 با توجه احتمال گرفتن در شبکه و پرگینت (Prigent) در تشخیص عضله قلب و NHE1 mRNA در تحقیق دیگر نشان داده است که محتوی در گروه این می‌باشد. [12] هر چند کاهش عضله NHE1 ممکن است به عنوان کاهش پای این در شرایط ایمنی نژاد و Pierce از تریک استرپتوژوتونیم ‏(کاهش می‌باشد) [8] هم افزایش قلب نژاد در و NHE1 mRNA در تحیص دیگر نشان داده است که محتوی در مورد افزایش قلب و NBC و MCT4 و موارد افزایش قدرت دادن و افزایش محتوی پروتئینی MCT1 در تاریخ می‌توان نشان داده که یک جمله از مراجعه موجب افزایش می‌شود. روندهای NHE1 mRNA از همین مهاجر که منحصراً نشان می‌دهد که می‌تواند در و NBC و اندازه‌گیری بروز و NHE1 mRNA در تحیص دیگر نشان داده که می‌تواند در عضله اسکلتی کم می‌شود اما این افزایش در سطح پروتئینی در عضله اسکلتی معنادار نیست. [21] Rasmussen و مهارات در شرایط متوسط Baker در مورد 1/4 موارد از افراد دیابتی نوع 2 و ممکن است در بدن حس دیابت در مورد افزایش محتوی پروتئینی در MCT1 mRNA عضلات اسکلتی اکسیداتور موجب افزایش می‌شود. [19] در تحقیق دیگر MCT1 اثر تمرینات قدرت بر محتوی پروتئینی و MCT4 عضلات اسکلتی راه دادن با نژاد در شبکه و تمرین در مورد افزایش قدرت ماه ماهیان از نوع باشند. مهارت NHE1 با توجه احتمال گرفتن در شبکه و پرگینت (Prigent) در تشخیص عضله قلب و NHE1 mRNA در تحقیق دیگر نشان داده است که محتوی در گروه این می‌باشد. [12] هر چند کاهش عضله NHE1 ممکن است به عنوان کاهش پای این در شرایط ایمنی نژاد و Pierce از تریک استرپتوژوتونیم ‏(کاهش می‌باشد) [8] هم افزایش قلب نژاد در و NHE1 mRNA در تحیص دیگر نشان داده است که محتوی در مورد افزایش قلب و NBC و MCT4 و موارد افزایش قدرت دادن و افزایش محتوی پروتئینی MCT1 در تاریخ می‌توان نشان داده که یک جمله از مراجعه موجب افزایش می‌شود. روندهای NHE1 mRNA از همین مهاجر که منحصراً نشان می‌دهد که می‌تواند در و NBC و اندازه‌گیری بروز و NHE1 mRNA در تحیص دیگر نشان داده که می‌تواند در عضله اسکلتی کم می‌شود اما این افزایش در سطح پروتئینی در عضله اسکلتی معنادار نیست. [21] Rasmussen و مهارات در شرایط متوسط Baker در مورد 1/4 موارد از افراد دیابتی نوع 2 و ممکن است در بدن حس دیابت در مورد افزایش محتوی پروتئینی در MCT1 mRNA عضلات اسکلتی اکسیداتور موجب افزایش می‌شود. [19] در تحقیق دیگر MCT1 اثر تمرینات قدرت بر محتوی پروتئینی و MCT4 عضلات اسکلتی راه دادن با نژاد در شبکه و تمرین در مورد افزایش قدرت ماه ماهیان از نوع باشند. مهارت NHE1 با توجه احتمال گرفتن در شبکه و پرگینت (Prigent) در تشخیص عضله قلب و NHE1 mRNA در تحقیق دیگر نشان داده است که محتوی در گروه این می‌باشد. [12] هر چند کاهش عضله NHE1 ممکن است به عنوان کاهش پای این در شرایط ایمنی نژاد و Pierce از تریک استرپتوژوتونیم ‏(کاهش می‌باشد) [8] هم افزایش قلب نژاد در و NHE1 mRNA در تحیص دیگر نشان داده است که محتوی در مورد افزایش قلب و NBC و MCT4 و موارد افزایش قدرت دادن و افزایش محتوی پروتئینی MCT1 در تاریخ می‌توان نشان داده که یک جمله از مراجعه موجب افزایش می‌شود. روندهای NHE1 mRNA از همین مهاجر که منحصراً نشان می‌دهد که می‌تواند در و NBC و اندازه‌گیری بروز و NHE1 mRNA در تحیص دیگر نشان داده که می‌تواند در عضله اسکلتی کم می‌شود اما این افزایش در سطح پروتئینی در عضله اسکلتی معنادار نیست. [21] Rasmussen و مهارات در شرایط متوسط Baker در مورد 1/4 موارد از افراد دیابتی نوع 2 و ممکن است در بدن حس دیابت در مورد افزایش محتوی پروتئینی در MCT1 mRNA عضلات اسکلتی اکسیداتور موجب افزایش می‌شود. [19] در تحقیق دیگر MCT1 اثر تمرینات قدرت بر محتوی پروتئینی و MCT4 عضلات اسکلتی راه دادن با نژاد در شبکه و تمرین در مورد افزایش قدرت ماه ماهیان از نوع باشند. مهارت NHE1 با توجه احتمال گرفتن در شبکه و پرگینت (Prigent) در تشخیص عضله قلب و NHE1 mRNA در تحقیق دیگر نشان داده است که محتوی در گروه این می‌باشد. [12] هر چند کاهش عضله NHE1 ممکن است به عنوان کاهش پای این در شرایط ایمنی نژاد و Pierce از تریک استرپتوژوتونیم ‏(کاهش می‌باشد) [8] هم افزایش قلب نژاد در و NHE1 mRNA در تحیص دیگر نشان داده است که محتوی در مورد افزایش قلب و NBC و MCT4 و موارد افزایش قدرت دادن و افزایش محتوی پروتئینی MCT1 در تاریخ می‌توان نشان داده که یک جمله از مراجعه موجب افزایش می‌شود. روندهای NHE1 mRNA از همین مهاجر که منحصراً نشان می‌دهد که می‌تواند در و NBC و اندازه‌گیری بروز و NHE1 mRNA در تحیص دیگر نشان Darmellah در تحیص دیگر که توسط NHE1 در گرفت، نشان داده شد که افزایش عضله 1 در رئت های دیابتی با هایپرترف کربن می‌تواند بوده و این افزایش عضله بدون تغییر در محتوی پروتئینی این انتقال دهنده رخ داده است. آنها همین مهاجر که به یک جمله از NHE1 و عموا در دیگر در هایپرترف کربن ارتباط و جوید NHE1 داراد. [8] A در تکوین و همکاران، در بر مطالعه اثر تمرینت استقامتی بر پیام زن و محتوی پروتئینی و MCT4 و MCT1 اسکلتی راه دیابتی و سال مورد از افزایش قرار دادن، نتایج نشان داد که تمرین استقامتی بین زن و محتوی پروتئینی و MCT4 و MCT1 را در گروه مورد نیت در سال افزایش داده است. [18] همین مهاجر در تحیص دیگر که 1. Streptozocin
تروش‌ها

تعداد 40 نر نواز ویستار در سن 4 هفته‌گی با میانگین وزنی 457/8 گرم از انتستی پیوستو ایران تهیه و در شرایط دمای 24 درجه سانتی‌گراد تحت سیگنال تزریق 42 ساعت تزریق شدند. ورزش به طور روزانه درخت و رنگ‌ها با غذای محصولات رنگ و آب تعیین شدند. از گذشت دو هفته (سازگاری با محیط آزمایشگاه و رسیدن به وزن مطلوب)، رنگ‌ها با میانگین وزن 137/2 گرمی طوری تکمیل‌پذیر بودند. استفاده از تزریق و تزریق اسکیجن رنگ‌های سوختگی‌های پرچرب و تزریق اسکیجن ایجاد شد. غذای مورد استفاده شامل 5/8 درصد کربوهیدرات و 7/17 درصد برنج در شش بار و عناصر تشکیل دهنده آن در جدول 1 گزارش شده است. [42] این تزریق غذایی به وسیله‌ی تم تحقیق به صورت داخلی و با همکاری کشره کانی درام و مؤسسه‌ی واکسن‌سازی و سرم‌سازی راکی ایران انجام گرفت. رنگ‌های گروه دیابتی به مدت و چهار هفته نخست مصرف غذای چرب و تزریق اسکیجن ایجاد شد.

HOMA-IR

تست1 24 ساعت بعد از آخرین جلسه تمرینی، بعد از 8 ساعت ناشی‌السنتی نمونه خونی به میزان 1 میلی‌لیتر از چشم حیوان جمع‌آوری و جداسازی پلاسما با سانتریفوژ و در صورت نیاز تزریق گلوکز و HOMA-IR صورت می‌گیرد. C C در 4 ساعت و جهت انتدازه‌گیری (E2000)

انسولین ناشی‌السنتی چهار تکنیک نگهداری شد. اندازه‌گیری انسولین به روش اسکیجن و به کای کشت شرکت Millipore با حساسیت انتدازه‌گیری یک catalog number: # نانو‌گرم به ازای هر میلی‌لیتر طبق دستورالعمل شرکت سازنده انجام گرفت. غلظت گلوکز با روش آنزیمی گلوکز اکسیداز با کیت شرکت پارس آزمون انتدازه‌گیری گردید. مقادیر

$\text{HOMA-IR} = \frac{\text{Insulin} \times \text{Glucose}}{22.5}$

1. Homeostasis model of insulin resistance
استخراج نمونه

۲۸ ساعت بعد از اخیرین جلسه تمرینی رتیقه به وسیله تزریق درون‌ساختی کلومین (۹۰ میلی‌گرم به ارزیابی هر کیلوگرم و زاپلارین (۱۰ میلی‌گرم به ارزیابی هر کیلوگرم) به‌صورت واعظی و با یکتنده تطبیقی انگشتان پا (سی‌بی‌آ) بالا کشیده و در تیژوان ۳۰ میلی‌گرم به روش تجزیه و تحلیل بعدی نهاداری گردیده شد [۱۹].

Real time –PCR

حدود ۵۰ میلی‌گرم عضله به روش هاوان کویپر بودن در کردی و جهت استخراج نمونه به مدت ۱۵ دقیقه هموگلین گردید. به‌منظور برداشتن اجزای پروتئین محصول حاصل در ۲۰ دقیقه، ۱۲۰۰ سانتی‌فیوز شد. سپس راکت را با مولکول Isol بالا کردن عناصر و به مدت ۱۵ تا ۱۰ دقیقه یکبار به آرامی نکان داده شد و سپس محصول را به مدت ۳۰ دقیقه روی یخ قرار گرفت. محصول در ۵ دقیقه، ۱۲۰۰ سانتی‌فیوز و بخش RNA معدنی و آلی از هم جدا شدند. بخش محتوی RNA برداشت و ۳ حجم مایع رنگ‌بندی به یک‌نوبانل اضافه نموده و به مدت ۲۰ دقیقه در جامدایش بود. در محله بعد محصول را به RNA Real-Time ۱۲۰۰ سانتی‌فیوز نموده تا ۲۰ دقیقه رسوب کند. رسوب حاوی RNA RNA-Free در محله بعد محصول را به RNA خالی و در RNAs-Free آب بیفکت و RNA-غلفت با استفاده از ۳ دستگاه نانوآزمایش و RNA تخیل مولکول RNA تعیین RNA با استفاده از یک میکروگرم از Reverse primers و با استفاده از cDNA نشان‌برداری مکروسنج انجام گرفت (جدول ۲).
جدول 1- ترکیب غذای پرچرب و عناصر تشکیل دهنده آن

<table>
<thead>
<tr>
<th>عنصر تشکیل دهنده</th>
<th>گرم / کیلو گرم</th>
</tr>
</thead>
<tbody>
<tr>
<td>پودر غذای طبیعی رت</td>
<td>345</td>
</tr>
<tr>
<td>روغن گیاهی</td>
<td>10</td>
</tr>
<tr>
<td>کازن</td>
<td>16</td>
</tr>
<tr>
<td>کلسترول</td>
<td>6</td>
</tr>
<tr>
<td>ویتامین و مواد معدنی</td>
<td>3</td>
</tr>
<tr>
<td>میونین</td>
<td>1</td>
</tr>
<tr>
<td>کلاپت سدیم</td>
<td>1</td>
</tr>
<tr>
<td>جوش شیرین</td>
<td>1</td>
</tr>
</tbody>
</table>

جدول 2- مشخصات پروتکل ترمینی

<table>
<thead>
<tr>
<th>حجم آشامیزی</th>
<th>سرعت (m/min)</th>
<th>مدت (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 روز</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>هفته 1</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>هفته 2</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>هفته 3</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>هفته 4</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

جدول 3- توالی برای‌مرهای مورد استفاده در تحقیق

<table>
<thead>
<tr>
<th>زن</th>
<th>Gene bank</th>
<th>Reverse primer</th>
<th>Forward primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHE1</td>
<td>SLC9A1</td>
<td>GCTGCGCAACTCCTCAAGAAG</td>
<td>CACATCAAGTGGCTGTC</td>
</tr>
<tr>
<td>NBC1</td>
<td>SLC4A8</td>
<td>CATG TAGGACTTTGCTTTC</td>
<td>ACTTCTCATGCTGCTTC</td>
</tr>
<tr>
<td>18S</td>
<td>18s</td>
<td>TGGTGGTCTGGCAACTGAGGC</td>
<td>GTC GTCTCTCGTATGCGT</td>
</tr>
</tbody>
</table>

جدول 4- اجزای PCR

<table>
<thead>
<tr>
<th>Product</th>
<th>Syber mix(μl)</th>
<th>Primers(μl)</th>
<th>Taq-polymerase(μl)</th>
<th>cDNA (μl)</th>
<th>ddH2O(μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHE1</td>
<td>12/5</td>
<td>15/5</td>
<td>2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>NBC1</td>
<td>12/5</td>
<td>15/5</td>
<td>2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>18S</td>
<td>12/5</td>
<td>15/5</td>
<td>2</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
جدول 5- مشخصات آنتروپومتریک و منابع کروحةی تحقیق

<table>
<thead>
<tr>
<th>گروهها</th>
<th>کنترل سالم</th>
<th>تمرین دیابتی</th>
<th>وزن (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG</td>
<td>31.7 ± 18.1*</td>
<td>29.7 ± 20.1†</td>
<td>12**</td>
</tr>
<tr>
<td>GLU</td>
<td>385/47 ± 78/95*</td>
<td>294/44 ± 98/76 †</td>
<td>9/6</td>
</tr>
<tr>
<td>IRI</td>
<td>0.65 ± 0.15*</td>
<td>7.15 ± 0.25 †</td>
<td>1/1</td>
</tr>
<tr>
<td>HOMA</td>
<td>0.17 ± 0.25*</td>
<td>0.25 ± 0.2</td>
<td>0/0.2</td>
</tr>
</tbody>
</table>

* اختلاف معنادار با گروه کنترل سالم (P<0.05)
† اختلاف معنادار با گروه کنترل دیابتی (P<0.05)

شکل 1- تغییرات وزن بدین در کروهامی مختلف تحقیق

<table>
<thead>
<tr>
<th>گروهها</th>
<th>کنترل سالم</th>
<th>تمرین دیابتی</th>
<th>وزن (کیلوگرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG</td>
<td>75 ± 8</td>
<td>70 ± 8</td>
<td>75 ± 8</td>
</tr>
<tr>
<td>GLU</td>
<td>120 ± 10</td>
<td>130 ± 10</td>
<td>120 ± 10</td>
</tr>
<tr>
<td>IRI</td>
<td>5 ± 1</td>
<td>6 ± 1</td>
<td>5 ± 1</td>
</tr>
<tr>
<td>HOMA</td>
<td>0.7 ± 0.1</td>
<td>0.8 ± 0.1</td>
<td>0.7 ± 0.1</td>
</tr>
</tbody>
</table>

* اختلاف معنادار با گروه کنترل سالم (P<0.05)
† اختلاف معنادار با گروه کنترل دیابتی (P<0.05)

شکل 2- تغییرات گلوکز پلاسمای قبل و بعد از بروکسل تمرینی
منفعتی و الگوهای منفعتی استنتاج از نتایج تمرین اسکلتی بر بیان از این میانگین نام‌نویسه‌های نیکلین 1 (NHE1) و...

![نمودار تغییرات انسولین پلاسما و index ir-homa](image)

شکل ۳ - نمودار تغییرات انسولین پلاسما و index ir-homa

نتایج

- اختلاف معنی‌دار با گروه کنترل سالم (P<۰.۰۵)
- اختلاف معنی‌دار با گروه تمرین دیابتی (P<۰.۰۵)

شکل ۴ - نمودار نسبی mRNA NHE1 در عضله قلبی گروه‌های تحقیق

شکل ۵ - نمودار نسبی mRNA NBC1 در عضله قلبی گروه‌های تحقیق
بحث

کنترل و تنظیم pH سلول قلب جهت حفظ اتقاطیس‌های مکرر عضلانی و جلوگیری از آسیب در حین تغییرات‌های ورودی و همچنین در سطح پاتولوژیکی، داده‌ای است. در مطالعه حاصل مدل دایت نوع 2 و تمرین استغلالی به عنوان شرایط اجباری انجام شد. سپس، در نهایت، داده‌های کنترل دیابتی ناشی از NHE1 mRNA و غلظت از مکرر NHE1 mRNA را مورد بررسی قرار داده. تحقیق حاصل اولیه نشان داد که سطح آن در مدل دایت نوع 2 افزایش یافته است. همچنین به مدل دایت نوع 2 نسبت به شرایط طبیعی کاهش می‌یابد و در مدل دایت نوع 2 در غلظت سلول قلب C(3) همگام است. در مطالعه NHE1 mRNA و NHE1 mRNA در مدل دایت نوع 2، همگامی و در مدل دایت نوع 2، همگامی در مدل دایت typeof
Mitogen-activated protein kinases

3. Mitogen-activated protein kinases

4. Gosmanow, A and et al

5. Protein kinase C

... activated protein kinases...
سیاستگازیاری

نوسیله‌دان به‌دنبال سایر، تک‌سید و نشک خود را از صدای حمایت از پژوهشگران کشور (ربیست جمهوری)
با جهت محدودی مالی از حقیقی خاص، شرکت دام و طیور
کاری دام و مرکز حقیقی‌گونه این چیزیک دانشگاه علوم
پزشکی رازی کرمانشاه به جهت همکاری در اجرای حقیقی
ابزار می‌دارند.

کلمه‌ای از طریق فعال کردن چندین سازوکار به تغییرات در
سطح mRNA و پروتئین ترانسفرهای غشایی کمک
می‌کند. در مجموع تایید محققی نشان داد که بی‌بان
زن در گروه کنترل دیابتی کاهش قابل ملاحظه‌ای دارد و
تعمیر استقامتی می‌تواند این کاهش بیان را جبران و به
سطح نرم‌الزندی کند. همچنین فیگور بیان، مختص هر
زن و نخست متابولیک آن در بافت مورد نظر دارد.

مقدمه

18. نکویی، رحمت‌الله؛ جعفری، حمید؛ قراخانلو، رضا؛ مطیعی، آسیف‌‌اولیا؛ کریمی، حسین‌رضا؛ افشار، سید حسین‌علی. افزایش کلسترول، توده و همکاران. نسخه آزمایشی. در عضلات مبتلا به دیابت. انتشارات زبان‌های نوین. تهران 2007.
22. Rasmussen M, Juel C and Nordsborg B. Exercise-induced regulation of muscular Na–K– pump, FXYD1, and NHE1 mRNA and protein expression: importance of training status,

