مقدمه‌ای بر فناوری "چاب زیستی" به عنوان روشن‌نویز در مهندسی بانف

چکیده
نکته‌های مهندسی بانف، چه به صورت ستی و چه نوین، تلاش می‌دارند تا ساخته‌های با ویژگی‌های مشابه بانف‌های طبیعی سازند. از این رو، مفهوم نیتی‌سازی یکی از زمینه‌های مطرح در مهندسی بانف است. تلاش‌هایی مهندسی بانف در جهت ایجاد ساختارهایی با تقلید از ویژگی‌های بانف‌های طبیعی بدین ترتیب، توسط پژوهشگر ایرانی تحت "عنوان چاب زیستی سولو" و "اندازه انسان"، به ترتیب نوشته شده است. در این روش، به کمک رایانه و چاپگرهای سی‌سیلیزری، بانف‌های سولو و همچنین بستر رشد، در مکان دقیق و از پیش طراحی شده به صورت آزاد می‌تواند به صورت مستقل درون هم یا خارج از شیت طبیعی در طی فرآیند اتصال بافت به پیوسته و ساختار سولو سه بعدی با استفاده از ریماسازند، فناوری چاب زیستی نیازمند طراحی و مشاهکت به‌عنوان یک بافت ماهی‌گیر، که در این زمینه در سالهای اخیر، این فناوری توانایی بالایی در ساخت اعضای بدن در آینده خواهد داشت. مقاله حاضر، موروری بر جنبه‌ها

گوناگون و کاربردی چاب زیستی به عنوان روشن‌نویز در مهندسی بانف می‌باشد.

واژگان کلیدی: مهندسی بانف، چاب زیستی، جوهر زیستی، کاغذ زیستی، چاپگر زیستی

1-دانشکده مهندسی پزشکی، گروه بیومتریکال، دانشگاه امیرکبیر، تهران
2- مرکز تحقیقات عضو/پزشکی بانف، دانشگاه امیرکبیر، تهران

*شماره تلفن: 021-22029840، تاریخ: 20 مهر 1390
fakhrzad@ums.ac.ir
هدف پژوهشی سنتی و نوین همواره تالمین سلامت افراد بوده است. از دست دادن بافت‌های بدن از بین رفتن عملکرد اندام‌ها و ارگان‌ها و مواردی از این قبیل، تلاش دانشمندان اندام جا به پاس انگیزه‌ای را به همراه داشته است. استفاده از روش‌های دارو درمانی و زن درمانی یک شیب می‌باشد از مطالعات پیش‌تر که بهترین راه‌کارهای موتوری باشند اما در مراحل بیشتری که عملکرد آن ممکن بر از دست دادن بافت یا اندام و یا عملکرد آن می‌شود این شیوه‌ها گزارشگو نیستند. علم پزشکی همواره به دنبال راه‌کارهای برای ترمیم بافت‌های آسیب دیده، رفع مشکلات عملکردی بیماری‌ها و اندام‌های دن سالاریکی بافته‌ها از دست رفته بوده است به طوری که یا جایگزینی بافته‌های بافتی بیان و عملکرد و خصوصیات بافت‌های اصلی بدن را داشته باشند. یکی از راه‌کارهای که در حال حاضر شاید به عنوان روشی معمول جهت جایگزینی بافته‌ها از دست رفته بدن می‌باشد. پیوند اعتماً است. آموزه‌های که در لیست انتظار بت‌های افسانه‌هایی می‌باشند در طول سال‌های مختلط به طوری که در حال افزایش است و این در حالی است که به دیل ممناسبت محدود عرض دهنده آمار اعمال بی‌پایان رشد چشم‌گیری تناشته است (شکل 1). با اینکه این روش، شیوه‌های نوین‌های درمانی، انتقال مشکلات و معضلات متعدد کمک می‌کند عرض و دهنده پیوند انتقال مشکلات ناشی از انتقال آلودگی، از ایستاده به سازگاری بافت یا جایگزینی شده توسعه بدن بیمار گیرند و مشکلاتی از این دست همواره به عنوان معیار دامن گیر پژوهش امر را بهشت در جهت ساخت بافت‌های سنتی".

[1] Wait-listed patients (●) and transplants (○)
oshays gosanzasi Sirri 4 [10] dastemendid mi-shund va az solid free gosanzasi, pirohosaneh viwad stereolithography, fused deposition, forming (SSF) va kafar be 3-dimensional inkjet printing va sahkh darbasti be ahebad behdigheh hevand, amarsh nudeh.

ba kast badees vay darbaste ashefeht be ahebad shahed va sahkh darbasti be ahebad behdigheh hevand, amarsh nudeh.

ashtehaaye roshayi sabzeh ghesat darbasti be ahebad behdigheh hevand 4 va kafar be sahkh darbasti be ahebad behdigheh hevand. amarsh nudeh.

4- Rapid Prototyping
5- Cell Feeding
6- Stiff Scaffold Cell Loading
7- Perfusion Bioreactors
8- Angiogenesis
9- Biomimetic
10- Cell & Organ Bioprinting

6- Perfusion Bioreactors
7- Stiff Scaffold Cell Loading
8- Angiogenesis
9- Biomimetic
10- Cell & Organ Bioprinting

Fasa va baste manasb bhejat reysh va shakile gheri pereh baveh badees va ro bahrami ke amrozeha biotimyalaye be ahebad behdigheh hevand. sahkh darbasti be ahebad behdigheh hevand.

rekhekehaaye darbasti be sahkh darbasti be ahebad behdigheh hevand va ro bahrami ke amrozeha biotimyalaye be ahebad behdigheh hevand.

Downloaded from ijdld.tums.ac.ir at 23:37 IRDT on Saturday May 9th 2020
دومره‌ی پیش‌فراری طرح گسترش‌دهنده (blueprint) اولیه عضو مورد نظر با شبیه‌سازی رایانه‌ای بر می‌باشد. تصاویر به دست آمده از این فرآیند آبی دیده می‌شوند. بدن منظر می‌توان از تصادف با پازلیامی شده، دیجیتال آن عضو خاص که CT یا MRI مراجعه شده باشد، از مدل‌های رایج کمی گرفت. [15] در مرحله پیش‌فراری، چاپ رایانه‌ای باعث صورت لایه به لایه تا تشکیل ساختار سبزی می‌شود و نور صورت لمی‌گیرد. یافته‌ی که در این مرحله تولید می‌شوند هنوز قابل عملکرد ندارند. در مرحله پس‌پرینت‌سازی ایجاد ساختار توسط پروانه‌های متعدد مصرف شده و فقید داده می‌شوند.

فاوتواری چاپ زیستی با بهره بردن از مفاهیم زیست‌شناسی تکاملی، اصول مهندسی زیستی، مهندسی زیست‌مواد و راه‌های رایانه‌ای سعی بر ساختن بافت‌ها و اندام‌های جایگزین به ناحیه‌های چربی پزشکی بزرگ دارد. شاید بتوان گفت آنچه در این استراتژی مهندسی بافت نسبت به سایر شیوه‌های سنی و حتی نوین مهندسی بافت بر پایه رایانه‌ی پیش‌فراری توجه یافته است، توجه به مبانی سلول‌های طراحی که این روش سعی بر آن دارد که با تکیه بر آنچه در شکل کهی یک بافت طبیعی درون یک ماه و یا حتی دهکار مثال جهت شبیه‌سازی زیستی همه جانبه، به مهندسی بافت‌ها پردازد.[16]

![شکل 2- انجام ساختارهای سه بعدی در پرینت کردن بافت‌های زیستی](image)

اجرا اصلی در چاپ زیستی

فاوتواری چاپ زیستی مانند سایر فناوری‌های معمول چاپ، نیازمند مشارکت سجز اصلی می‌باشد: جوهار زیستی، کاغذ زیستی، چاپرگر زیستی.

6- Post printing
7- Developmental Biology
8- Biomaterials
9- Bioink
10- Biopaper
کاغذ زیستی

فرآیند سازی بستره که بتوان سلولها را بر روی آن گذاشته و نمونه دیگری از جهانیه مورد توخیج در این فناوری

است. بستر مناسب ها که همان نشان داریم را ایفا خواهند

نمود، باید علاوه بر پرسارگری با پیستنم چاب (آکما چاب

شانه) چه به صورت همزمان و یا به صورت منتاور و لایه

به لایه) خصوصیاتی نظر زیستی سازگاری، شیب‌سازی

 unanimus خارج سلوله، امکان اتصال به سلولها. این

حافظ مکانیکی لازم جهت نگهداری و حفظ سلولها در

شده از خالی فاطمه و حمایت و ارائه نور و همچنین

تامین فضای مناسب جهت رشد سلول و مواد غذایی و عوامل

رشد به سلولها را دارا باشد. [19].

کاغذ زیستی را میتوانیم به عنوان بستره مناسب با

ویژگی‌های زیستی را نظیر چربی که قابلیت

فرآیندپذیری را داشته باشد، ملاک‌های یک کاغذ زیستی

ایده آلی برای چاب زیستی شما مورد زیر است:

- قابلیت فرآیند پذیری (امکان توزیع به صورت لایهای و

زاج شدن سریع)

- شیب‌دار بیانتر خارج سلول (دارا بودن پدیدهای

هم و اصلی و همچنین عوامل رشد مناسب)

- زیستی سازگاری

- هوشمندی(شانه شدن در محل و حساسیت نسبت به

تحرک)

- فرآیند آلودگی اکما جوش خوردن بافت‌ها و توده‌های

سلوله (عدم تحملی سازی حفرات سلوله)

- قابلیت حفظ شکل

- آپ دوست بودن (تفاوتپذیری مناسب و کارامد)

- چسب‌پذیری

- شانه شده از طبیعت

- همراه داشتن عوامل تحرکی گرگر زایی [17]

با توجه به خصوصیات تام برده، هیدروفیلی به عنوان

دسته‌ای از مواد معمول که در مهندسی بافت به کار

جوهر زیستی

سوپرسانسونهای سلوله، آماده شده از یک نوع سلول و

یا چند نوع سلول و یا توده‌های سلوله به عنوان جوهر

زیستی در این فناوری به کار می‌روند. با توجه به مانند

ملکولی فرضی اتصال مناسبی (DAH) یک نوع شفافیت

وضع شد و همچنین ماهیت مایع ها و فراگرفت

سلوله، یا یا قطعه‌های سلول در فازهای شفاف و مناسب

و بر هم کنش آنها با یکدیگر و پیستنشان بر اساس به

حذفی رساندن اثری، سطحتی می‌تواند سبب خود

آرایش یافته‌ای و خود کریستال ایجاد收割یکه به

بافتنشانی رسانه‌های در محل ديفت و نتیجه به

هم، می‌توان انتقال ایجاد ساختارهای باکوکات

جوش خودردهای را داشته که در نهایت منجر به ایجاد بافت مورد

نظر می‌شود (شکل). [15,16].

به عوامل دیگر، جوهر زیستی، تجمعه سلولی منشگان با

چگالی یا ابست که مشابه فکرات جوهر بر بستر کاغذ

زیستی متقن شده و به عنوان واحد ساختاری اعضا و

بافت در نظر گرفته می‌شود.

شکل ۲- جوش خودردهای نوقاف سلوله جهت ایجاد

بافت‌های با ساختار سه بعدی پیچیده

1- Bioprinter
2- Cell suspension
3- Cell Aggregate
4- Differential Adhesion Hypothesis
5- Tissue Liquidity
6- Interfacial Tension
7- Self Organization
8- Self Assembling

9- Extracellular matrix
10- Biodegradability
11- Processability
چاپگرهای تجاری موجود با اصلاحات جهت تطیف شرایط چاپ با سلول‌ها در تحقیقات مختلف مورد بهره‌برداری است (22). پیشگامان چاپ سلولی با توسعه مبانی این شیوه که نیازمند ابرازی توامند جهت انتقال و قراردادی مومر و تحقیقات مورد حاصل از ایالات متحده نیز چاپ سلولی در نواحی اولیه لایه‌های گوشی و ماهیچه صاف و همبستگی پرپتی‌ها توسط Boland و Wilson در سال 2003 انجام شد. برای طراحی این زیست‌چاپ از چاپگرهای تجاری به عنوان میانه استفاده شد Cannon BJ2200 و HP6600 نتایج به دست آمده نشان از قابلیت این روش جهت استفاده در ایجاد ساختارهای سلولی دارد (37). در ادامه این گروه با استفاده این روش به چاپ بندهای به بررسی اثر زنده‌ای مختلف و نیز تحقیقات آنها نشان از اهمیت فواید زل در چاپ و توسه سلول‌ها در دارد (18). در سال 2002 تأسیس شد که قادر به قرار دادن سلول‌ها بر پشت رشدشان و درون ساختارهای مانده داریده‌ها. اولین بار توسط مطرح که توسط micropositioning یکی از روش‌های ایجاد ساختارهای مانده داریده‌ها. اولین بار توسط micropositioning یکی از روش‌های
دانشگاه میسوری کلمبیا مورد بررسی قرار گرفت و به
آثات رسید [۳۰-۳۱] [۲۸].
در سنتامیر همان سال اولین کارگاه بین المللی در مورد
چاپ زیستی در دانشگاه منچستر برگزار شد. [۲۲] [۲۳] [۲۲] [۲۳]
از ۱۰ کشور دیگر جهان مخفف چاپ زیستی به
ساختن پرداختن و این فناوری نوین به صورت رسماً
وارد محال از دنیا شد. برگزاری این کارگاه بین المللی
سبب تحقیق کارهای جدید و همکاری‌های بین‌المللی
شدند و زمینه تحقیقات بعضاً تعین شد.
موضوعات ارائه شده در این کارگاه، طیف وسیعی از کاربردهای ممکن
برای چاپ زیستی را از طرف ملکول (پروتئین و
گرفته تا اسکنر سلول و بافت و چاپ دارسی‌های
بافتی و همچنین استخراج‌های چند سلولی با خصوصیات
[۲۲] [۲۳] [۲۴] [۲۵].
نتایج استفاده از چاپگرهای جوبر افشان گرامی [۱] برای
قرار دادن سلول‌های ماهی‌یایی و عصبی با دقت بالا در
طرح‌های مختلف بر روی بست کلاژن و زل آگار نشان از
عدم آسیب جدی به سلول‌ها حین فرآیند دمایی چاپ بوده
است [۲۶] [۲۷]. در مطالعه در سال ۲۰۰۵، استفاده از چاپگرهای
پیرو کریتیک اصلاح شده با قابلیت چاپ پوسته و قطعات
(multinozzle system) طراحی شد [۲۸]. هدف این
استفاده از سیستم‌های جوبر افشان بر منای
محور پیوستگی کلی از اکباتان (عصبی) که
آرایه‌های سلولی با دقت بسیار بالا توصیف شده است [۲۹].
از دستگاه‌های تک‌زره این سیستم‌ها به صورت درحال حاضر
به همراه با استفاده از دستگاه‌های دیگری نیز به
اصلاح شده بوده است [۳۰]. نتایج
ساختن و ایجاد اطلاعات بین فعالیت‌های جوبر و
ساخت زیستی به صورت جدا در حالت برگزاری. به چاپ زیستی
طوری که پاسخگویی کنترل بین عملیت در این زمینه در
فیلد اثرات آمریکا در سال ۲۰۰۰ به شکل جمع و پیشین از
دانشمندان برگزار شد [۳۱]. هم‌اکنون مراکز تحقیقاتی معتبر
1- Thermal inkjet printer
موزوی بر چاپگرهای جوهر

چاپگرهای جوهر از اجزای مهم و پایه‌ای در فناوری جوهر انتقال محسوب می‌شوند. بررسی‌های گسترده‌ای نشان داده است که این اجزای می‌تواند در زمینه‌های مختلفی از جمله ساختاری، عملکردی و نیروی کششی از جوهر انتقال شود. این اجزای می‌توانند به شکل دیواره‌های بسته، لایه‌های مجزا یا حتی ترکیبی از این دو شکل حضور داشته باشند.

1- Resolution
2- Computer aided design
3- Computer aided manufacture
4- Tissue manufacturing
سیستم‌های چاپی تجربی برای ایجاد قابلیت چاپ به‌عنوان یک قابلیت جدید‌تری برای نویزهای کوچک‌تر بر سطح‌های دایره‌ای در شرایط عمومی قادر بود تحلیل آسان‌تری از فرکانس‌های ۱۵ کیلوهرتز و بالاتر از این آسان‌تری تحلیل سیستم‌های شکست و مرگ می‌شود. در استفاده از چاپ‌گرهای بی‌پویای‌ترین این تکنیک به یک مرد نظر قرار گیرد. آرگری، ابزار برای مطالعه‌هایی که در ضمن آسیب سلول‌ها و چاب موثر و یا یک توصیه این نوع سیستم‌ها به‌عنوان محدودیت فرکانس بوده‌اند [۳۱].

۲- Nozzle

» سیستم‌های چاپی تجربی برای ایجاد قابلیت چاپ به‌عنوان یک قابلیت جدید‌تری برای نویزهای کوچک‌تر بر سطح‌های دایره‌ای در شرایط عمومی قادر بود تحلیل آسان‌تری از فرکانس‌های ۱۵ کیلوهرتز و بالاتر از این آسان‌تری تحلیل سیستم‌های شکست و مرگ می‌شود. در استفاده از چاپ‌گرهای بی‌پویای‌ترین این تکنیک به یک مرد نظر قرار گیرد. آرگری، ابزار برای مطالعه‌هایی که در ضمن آسیب سلول‌ها و چاب موثر و یا یک توصیه این نوع سیستم‌ها به‌عنوان محدودیت فرکانس بوده‌اند [۳۱].

۳- Cell Encapsulation

» سیستم‌های چاپی تجربی برای ایجاد قابلیت چاپ به‌عنوان یک قابلیت جدید‌تری برای نویزهای کوچک‌تر بر سطح‌های دایره‌ای در شرایط عمومی قادر بود تحلیل آسان‌تری از فرکانس‌های ۱۵ کیلوهرتز و بالاتر از این آسان‌تری تحلیل سیستم‌های شکست و مرگ می‌شود. در استفاده از چاپ‌گرهای بی‌پویای‌ترین این تکنیک به یک مرد نظر قرار گیرد. آرگری، ابزار برای مطالعه‌هایی که در ضمن آسیب سلول‌ها و چاب موثر و یا یک توصیه این نوع سیستم‌ها به‌عنوان محدودیت فرکانس بوده‌اند [۳۱].

1- Bulk
2- Nozzle
1- Gel Point
کالزان در این مورد مناسب‌ترین پس جهت انتخاب زل مناسب باید نوع سلول بیز در نظر گرفته شود [12].

استفاده از زل‌های حساس به میکرو، که در حضور پونها تغییر فاز دهنده نسبت به زل‌های حساس به دما در فرابند چاب زیستی کمتر مورد توجه قرار گرفته. زیرا که این مواد جهت تشکیل زل نیاز به حضور دو جزء دارد: ماده اصلی زل و عامل زل سایر با شکل‌های کننده که معقولاً محلول بیونی به طوریتی با دو طرفی است. علاوه بر این سرعت زن شدن در این زل نسبت به زل‌های

Zylae طبیعی آزمایش مانند فیبرهای به دلیل اختلاف فیبر رنگی در دارای قابلیت خوبی جهت رشد و چسبندگی سلول‌ها می‌باشد. تشکیل فیبر از حضور پونها و ترمومنی که می‌تواند به محیط زل می‌باشد است. برای اجرای فیبرگره شده از خون می‌باشد، در دمای محیط به سرعت ساخته شده و سپس در حباب‌های طبیعی در مطالعات مرتبط با چاب زیستی با مزایای بسیار به دلیل قابلیت با دسترسی دشوار نسبت به سایر زل‌ها [32, 33].

معمولاً شده است [34].

در مقایسه که از سال 2003 تا 2003 در ارتباط با فاراری چاب زیستی جهت ساختار سه بعدی حاوی سلول انجام شده است. شما می‌توانید طبیعی با چاب گرفته شده از خون می‌باشد، در دمای محیط به سرعت ساخته شده و سپس در حباب‌های طبیعی در مطالعات مرتبط با چاب زیستی با مزایای بسیار به دلیل قابلیت با دسترسی دشوار نسبت به سایر زل‌ها [32, 33].

معمولاً شده است [34].

در مقایسه که از سال 2003 تا 2003 در ارتباط با فاراری چاب زیستی جهت ساختار سه بعدی حاوی سلول انجام شده است. شما می‌توانید طبیعی با چاب گرفته شده از خون می‌باشد، در دمای محیط به سرعت ساخته شده و سپس در حباب‌های طبیعی در مطالعات مرتبط با چاب زیستی با مزایای بسیار به دلیل قابلیت با دسترسی دشوار نسبت به سایر زل‌ها [32, 33].

معمولاً شده است [34].

در مقایسه که از سال 2003 تا 2003 در ارتباط با فاراری چاب زیستی جهت ساختار سه بعدی حاوی سلول انجام شده است. شما می‌توانید طبیعی با چاب گرفته شده از خون می‌باشد، در دمای محیط به سرعت ساخته شده و سپس در حباب‌های طبیعی در مطالعات مرتبط با چاب زیستی با مزایای بسیار به دلیل قابلیت با دسترسی دشوار نسبت به سایر زل‌ها [32, 33].

معمولاً شده است [34].

در مقایسه که از سال 2003 تا 2003 در ارتباط با فاراری چاب زیستی جهت ساختار سه بعدی حاوی سلول انجام شده است. شما می‌توانید طبیعی با چاب گرفته شده از خون می‌باشد، در دمای محیط به سرعت ساخته شده و سپس در حباب‌های طبیعی در مطالعات مرتبط با چاب زیستی با مزایای بسیار به دلیل قابلیت با دسترسی دشوار نسبت به سایر زل‌ها [32, 33].

معمولاً شده است [34].

در مقایسه که از سال 2003 تا 2003 در ارتباط با فاراری چاب زیستی جهت ساختار سه بعدی حاوی سلول انجام شده است. شما می‌توانید طبیعی با چاب گرفته شده از خون می‌باشد، در دمای محیط به سرعت ساخته شده و سپس در حباب‌های طبیعی در مطالعات مرتبط با چاب زیستی با مزایای بسیار به دلیل قابلیت با دسترسی دشوار نسبت به سایر زل‌ها [32, 33].

معمولاً شده است [34].
میکرو است [15]. نمونه چاب زیری فرضی و شناس
ویژه با برای چاب ساختارهای عروقی درون بلافاصله در
شکل علائم عضوی تشخیص چاب شاید برای تشخیص
جریان پرفونی قرار گیرد. در جدیدترین کار انجام شده
و همکارانش طی یک تلاش مواضعی "آزمایشی"
نمونه گرفته شده Forcacs
توانستند ساختار عریقی شاخه‌دار را توسط چاب نوده‌های
سلولی فیبرولیاز لیسترومب بازکردن (نکات)
[۲۲] پس می‌توان نتیجه گرفت که چاب ساختارهای
لوله‌ای نامیده رگ‌ها می‌تواند آغاز خویج برای ابتلا عملی
بودن این فناوری باشد [۲۲].

کاربرد محصولات به دست آمده از چاب زیری
با توجه به اینکه محصول سه بعدی به دست آمده به‌عنوان
شبکه تحت فناوری چاب زیری مورد استفاده قرار می‌گیرد.
کاربردهای مکانیکی، خاصاً در زمینه‌های علوم
محصولات به‌دست آمده از مهندسی باتری است.
محلی کاربرد عملی از نگاه فناوری چاب زیری
وجود دارد. ابزار فناوری مناسب در دو بعدی در
آزمایش برنوئین، می‌تواند ابزاری برای ایجاد مفهوم
سلولی و بسیاری دارویی فراهم سازد. از طرفی
کاهش هزینه‌ها می‌کند. همچنین مدل‌های فناوری چاب
شبکه می‌تواند از سلول‌های خود فرد گرفته شود.
ساخت فناوری چاب زیری به دو این فناوری می‌تواند مشکل
پیوند اضافه را در حالت آباد آل حمایت و انتخاب کرمان را
برای در خوش توصیف کوتاه تا [۲۲] در حالت اکتشاف
ایدئال. پس از چاب بافت‌ها، اگر روابط ساختار اندامی
پیچیده، اتساع توسط این شیوه محقق شود، می‌تواند مزایای
کوتاه مدت زیر با دنبال داشته باشد:

1- Biomatrce
2- Intermediate
تولید و بازیابی و جایگزینی بافت‌ها
کمبود اعضا در پیوند عضو می‌تواند مهم‌ترین دلیل عملی جهت توسه‌های مبتنی باشد. پیشرفت‌های اخیر بر پایه سلول‌های بی‌نقش این خاصیت، ممکن است به سمت پرورش‌کردن آراپنده‌ای سوی داد. پرورش‌کننده‌ای احتمالاً درمانی باید با توجه به تغییر در دامنه کاری و بهره‌وری سیستمی در اختیار باشد. درمان‌های اعضا در مورد یک‌دسته می‌تواند در مراحل این‌دسته بیماری پاسخ‌گو باشد. ساختار ارگان‌های پرورش‌کننده سیستمی امکان کننده است که گونه‌ای کاملاً هدف‌مند باشد.

مصروف آراپیش
ژیباپاسی و پرورش اندام، یک صنعت در حال رشد است و با افزایش سن جمعیت در حال رشد، افزایش خواهد یافت. چاب ارگان‌ای ارائه‌گویی به اصلاح و دوباره‌سازی بدن انسان خواهد بود. پیش‌گویی اینکه روزی تغییر بدن مانند تغییر لباس امروزی را به‌عنوان خواهد داشت. دور از اندازه تیست.

تعیین یان‌زنه و عملکرد آنها در بافت‌های هدف
جع‌بندی و جراحه‌ای آینده
چالش‌های پیش رو برای فرآیند مهندسی بافت شامل پایین‌پیتر ترکیب سلول‌ها، عوامل رشد، شرایط کشتن و زیست مواد براً مشکلات ادیبل می‌باشد. بیماری‌های زیست مواد استفاده شده در وظایف بیماری ساختار و ترکیبی‌ها از خواص شیمی‌ای و طبیعی بافت سلول‌های مشخص

I- Regenerative Medicine
لاهیای به دست آورده اولین قدمی در مهندسی بافت به روش چاب زیستی ایجاد ساختارهای ساده با روش ساخت لایه به لایه است. ساده‌ترین هندسه مورد تحقیق تکنیک ساختارهای صفه‌ای (مانند پوست) و با لوله‌ای نوتخالی (مانند رک) می‌باشد [۳۰].

مسیسگاری

نویسنده‌دان مقاله از جناب آقای دکتر باقر لاریجانی، جناب آقای دکتر شهریار حجتی امامی و همکاران جناب آقای دکتر علی محمد شریفی کمال تشکر و قدردانی را دارند.

پیروی می‌کند. این جنبه‌ها زیر تقسیم‌بندی‌ای نامیده شده و توسط روش‌های ناپویسکانولوژی مورد مطالعه [۲۶] با شایع‌ترین جایگاه تغییرات گرفته است و همچنین نتایج درخشانی به دست آمده در مدل‌های کوانتوم می‌توان امیدوار بود که پیشرفت در این زمینه باشد به طور شاخصی می‌رود که با اهداف نهایی مهندسی بافت ترکیبی سازد به طوری که بتوان آن‌ها و جایگزینی اعضا بدن را با نهایت تشایه به فاکتور اصلی در محیط بیرون تن ساخت و به‌دست منطقی کرد. چباب اعضای نه تا می‌توان در محیط بیرون تن ساخت و به‌داشت، بکار بکشید این راه‌های تکنیکی کنی ساخت می‌توان در محیط بیرون تن نیز این فراوردها را انجام داد و در واقع جراحی را برای چباب زیستی انجام داد به این ترتیب شیوه‌ای از جراحی نوین را برای چباب زیستی درون تن ایجاد نمود [۲۲] و در نهایت توانای ساخت زیستی بالاتری در محل گشایش و آسیب می‌تواند جراحی را تجربه کند [۱۸۸].

چجاب اعضا نتایج به سلول‌های بین‌بادی نادرس به طوری که هر می‌توان از سلول‌های بین‌بادی استفاده نمود و هم از سلول‌های بالغ فناوری چجاب اعضا نتایج به انتظار ۱۸ ساله برای رسیدن به بلند کنی حل شده نموده به لحاظ تغییر ایک انسان کامل را می‌توان در طول چند هفته ساخت. مغز انسان را می‌توان با بهبودی مهندسی نمود.

دانشجویان اخیراً نشان داده‌اند که چجاب زیستی اعضا بدن یا مبتکراتی لایه به لایه ساخت‌های پویسکانولوژی با کمک طراحی راپوری و چجاب گرافی زیستی یک فناوری قابل انجام است. اگرچه این فناوری بین رشته‌های در حال حاضر در ابتدا را خود قرار دارد ویلا بیشتر از فناوری ررو به رشد می‌باشد.

چشمانداز آنده فناوری چجاب زیستی، ساخت بافت‌ها و ظاهرها ی یک پیچیده دارای شاخه‌های عروقی مانند کلیه، قلب، کبد و ... می‌باشد که برای نبود به این هدف باید گامی به اولیه با ساخت بافت‌ها ساده‌تر در ابعاد کوچک‌تر پرداخت شود. با توجه به این نظریه که اکثر بافت‌های بدن را می‌توان از سرده کردن ساختارهای

1- Biomimetic
2- In Situ Robotic Biomanufacturing

