مقدمه‌ای بر فناوری "چاب زیستی" به عنوان روشی نوین در مهندسی بافت

رضا ایمانی، حسین فخرزاده*

چکیده

نکته‌هایی مهندسی بافت، چه ب‌صورت سنتی و چه نوین، تلاش دارند تا بافت‌های با ویژگی‌های مشابه بافت‌های طبیعی بسازند. از این رو ریز‌شیب‌سازی یکی از زمینه‌های مطرح در مهندسی بافت است. تلاش‌هایی مهندسی بافت در جهت ایجاد ساختارهایی با تقلید از ریز‌شیب‌های بافت‌های طبیعی بدند. از این رو، تکنیک‌های نوین تحت عنوان چاب زیستی سلولی و اندامها شده است. در این روش، به کمک رایانه و پاناگر سه‌بعدی، توده‌های سلولی و همچنین بستر رشد در مکان دقيق و از پشت طراحی شده به صورت لایه‌های متوالی روی هم قرار داده می‌شوند. در شرایط ابتدایی توده‌های سلولی در طی فرآیند اتصال بافت به پیوسته و ساختار سلولی سه بعدی پیوسته‌رای می‌سازند. فناوری چاب زیستی نیازمند طراحی و مشارکت سه بعدی است. در این روش رایانه به بهترین حالت را می‌دهد.

گوناگونی و کاربردی چاب زیستی به عنوان روشی نوین در مهندسی بافت می‌باشد.

واژگان کلیدی: مهندسی بافت، چاب زیستی، جهره زیستی، کاغذ زیستی، چاب‌گر زیستی

*فکری نور، پژوهشکده ایرانی از شرکت و توانایی، توضیح در این زمینه در سالهای اخیر، این فناوری توانایی بالایی در ساخت اعضای بدن در آینده خواهد داشت. مطالعه حاضر، مروری بر جنبه‌های

1. دانشگاه مهندسی پزشکی، گروه بیومتریال، دانشگاه ایرانی از شرکت و توانایی، تهران
2. مرکز تحقیقات علمی و پژوهشگاهی، دانشگاه ایرانی از شرکت و توانایی، تهران

فکری نور، پژوهشکده ایرانی از شرکت و توانایی، توضیح در این زمینه در سالهای اخیر، این فناوری توانایی بالایی در ساخت اعضای بدن در آینده خواهد داشت. مطالعه حاضر، مروری بر جنبه‌های

فکری نور، پژوهشکده ایرانی از شرکت و توانایی، توضیح در این زمینه در سالهای اخیر، این فناوری توانایی بالایی در ساخت اعضای بدن در آینده خواهد داشت. مطالعه حاضر، مروری بر جنبه‌های

فکری نور، پژوهشکده ایرانی از شرکت و توانایی، توضیح در این زمینه در سالهای اخیر، این فناوری توانایی بالایی در ساخت اعضای بدن در آینده خواهد داشت. مطالعه حاضر، مروری بر جنبه‌های

فکری نور، پژوهشکده ایرانی از شرکت و توانایی، توضیح در این زمینه در سالهای اخیر، این فناوری توانایی بالایی در ساخت اعضای بدن در آینده خواهد داشت. مطالعه حاضر، مروری بر جنبه‌های

فکری نور، پژوهشکده ایرانی از شرکت و توانایی، توضیح در این زمینه در سالهای اخیر، این فناوری توانایی بالایی در ساخت اعضای بدن در آینده خواهد داشت. مطالعه حاضر، مروری بر جنبه‌های

فکری نور، پژوهشکده ایرانی از شرکت و توانایی، توضیح در این زمینه در سالهای اخیر، این فناوری توانایی بالایی در ساخت اعضای بدن در آینده خواهد داشت. مطالعه حاضر، مروری بر جنبه‌های

فکری نور، پژوهشکده ایرانی از شرکت و توانایی، توضیح در این زمینه در سالهای اخیر، این فناوری توانایی بالایی در ساخت اعضای بدن در آینده خواهد داشت. مطالعه حاضر، مروری بر جنبه‌های

فکری نور، پژوهشکده ایرانی از شرکت و توانایی، توضیح در این زمینه در سالهای اخیر، این فناوری توانایی بالایی در ساخت اعضای بدن در آینده خواهد داشت. مطالعه حاضر، مروری بر جنبه‌های

فکری نور، پژوهشکده ایرانی از شرکت و توانایی، توضیح در این زمینه در سالهای اخیر، این فناوری توانایی بالایی در ساخت اعضای بدن در آینده خواهد داشت. مطالعه حاضر، مروری بر جنبه‌های

فکری نور، پژوهشکده ایرانی از شرکت و توانایی، توضیح در این زمینه در سالهای اخیر، این فناوری توانایی بالایی در ساخت اعضای بدن در آینده خواهد داشت. مطالعه حاضر، مروری بر جنبه‌های

فکری نور، پژوهشکده ایرانی از شرکت و توانایی، توضیح در این زمینه در سالهای اخیر، این فناوری توانایی بالا
هدف پزشکی سنتی و نوین همواره تامین سلامت فراد بوده است. از دست دادن بافت‌های بدن، از رفتگی علمکرد ادامه‌ای و ارکان‌هایی از این قبیل، تلاش دانشمندان بیانی اعضاء جایگزین را به همراه داشته است. استفاده از روش‌های دارو درمانی و زن درمانی یک در مراحل ابتدایی بی‌پایان یک بیماری راه‌کارهای موتوری باشند. اما در مراحل پیشرفته بیماری که معمولاً منجر به از دست رفتن بافت یا ادامه و یا علمکرد آن می‌شود این شیوه‌ها درک پاسخ‌گویی نمی‌شوند. علم پزشکی همواره به دنبال راه‌کارهایی برای ترمیم بافت‌های آسیب دیده، رفع مشکلات علمکردهای سیستمی و ادامه‌ای بدن و یا جایگزینی بافت‌هایی از دست رفته بوده است به طوری که جایگزینی بافت‌هایی که بیانی توانند علمکرده و خصوصیات بافت‌های اصلی بدن را داشته باشند، یکی از راه‌کارهایی که در حال حاضر شاید به عنوان روشی معمول جهت جایگزینی بافت‌هایی از دست رفته بدن می‌باشد، پیوند اعضاً است. آریمان بیمارانی که در لست انتظار پیوند اطلاعیه مستند در طول سال‌های مختلف به طور چشمگیری در حال افزایش است و این در حالی است که به دلیل محدودیت عضو دهدهام اعمال پیوند رشد چشمگیری نداشته است (شکل 1). با اینکه این روش، شیوه‌ای کارامد است اما مشکلات و معضلات داخلی، کبد عضو و دهدهم پیوند، مشکلات ناشی از انتقال آلودگی، امیت و زایی، پس‌درگی بافت جایگزین شده توسط برای بیماری مربوط به مشکلاتی از این دست همواره به عنوان معطوف دانی گیر

پزشکی امروز می‌باشد.[1]

[1] Wait-listed patients () and transplants ()

شکل 1: 1- بیمارانی که در لست انتظار پیوند اطلاعیه مستند در طول سال‌های مختلف به طور چشمگیری در حال افزایش است.

4- In vitro
5- Building blocks
6- Tissue engineering
7- Biomedicine
8- Scaffold
9- Traditional Tissue Engineering
10- Biomaterial

1- Gene therapy
2- Organ transplantation
3- Donor

افزوده و مقدمات مقدماتی برفرنگاری "چاقی زیستی" به عنوان رویشی نوین در مهندسی بافت
1. Surface Treatment or Modification
2. Scaffold-based Tissue Engineering
3. Computer Aide Tissue Engineering
4. Rapid Prototyping
5. Cell Feeding
6. Stiff Scaffold Cell Loading
7. Perfusion Bioreactors
8. Angiogenesis
9. Biomimetic
10. Cell & Organ Bioprinting

فضا و سطح مناسب جهت رشد و شکلگیری بافت جدید
را فراهم کند [1]. به طوری که اموزه بیومتریال‌های
بسیاری در این حوزه مورد استفاده و بیومتریال‌های می‌گردد
[6]. تحقیقات در زمینه مهندسی بافت سئی به انتخاب نوع
بیومتریال‌ها، استفاده از روش‌های مختلف برای ایجاد
ساختارهای متغیر، تغییر پارامترهای مکانیکی داربست‌ها
و بهینه‌سازی برهمکنش سولو‌ها با بیومتریال‌ها از طریق
روش‌های اصلاح سطح معطوف شده است [7].

شکل 2- شماتیک از مراحل مهندسی بافت به دیگان سنتی برای
یک قرآیند مهندسی بافت می‌توان شرح جمله را در نظر گرفت:
1. سولو‌ها از بافت مینیمال جاده شده [2] شکست یافته و تکثیر می‌شوند;
2. تعداد کافی از سولو‌ها بر روی زیر هم می‌ریزند که نقش داربست را
افیا می‌کنند، پارامترهای می‌شوند [2] هم به یک درجه مورد
متأهل می‌شوند تا بافت را تغییرات می‌دهد از متحرک‌های
اهی روش‌ها است. راهکارهای موقت مناسب استفاده از
بیومتریال‌ها پریپوزون [3] که امکان تخلیه و انتقال مواد غذایی
و محیط محیط در حد محاسباتی را فراهم می‌سازند، مورد
استفاده قرار گرفته است اما همچنان مورد نیاز است
در این روش مطرح است. از این رو سئی امکان راهکار اساسی مورد
در بافت مهندسی شده به عنوان یک راهکار اساسی مورد
توجه قرار گرفته است. ایجاد شرایط مناسبی که بتواند
شکل‌گیری رگ‌های جدید را تغییر کند را با دنل داشته
شاهد یکی از روش‌های تغییرات سیستم بیست و هفتم
در قدم بعد تلاش‌های مهندسی بافت به پایه داربست آن
سفر طراحی داربست‌های مهندسی شده به استفاده از
ابزارهای نوین با قابلیت ایجاد اشکال و هندسه مناسب با
بافت مینیمال و یا بافت از سر رنگ معطوف شد. در این
تکنیک‌های ساختار داربست‌ها با دقت فضایی بیشتر با هندسه
از قبل طراحی شده بر محیط اطراف به دست آمده از
تصویر بردارهای الکترونیکی انجام می‌پذیراست. این روش‌ها
معمولاً تحت عنوان مهندسی بافت به کمک رایانه‌ای [9] یا

روش‌های پیگیری سریع [10] استفاده می‌شوند و از
ساختارهای متنوع به ساده کردن و 3D ساختارهای
ساختارهای متنوع به ساده کردن و 3D ساختارهای

روش‌های بافتی متنوع به ساده کردن و 3D ساختارهای

روش‌های پیگیری سریع [10] استفاده می‌شوند و از
مانی روش جاب زیستی
چاب ارگان که ما آن را به عنوان پیکر در ماهیت و
فناوری جای گیرشان است معرفی می‌کنیم، و چالی
است که در سال‌های اخیر برای حل مشکل‌های
بافت پریش این چاب جایزه است. جاب زیستی، کاربرد اصول فناوری
انگورسایر از جمله است. (چیدن لاپا به لایه سلول‌ها و ماتریسی)

رهاکننده‌ی میکرو‌کنترل‌برای مهندسی بافت است.

روش جاب زیستی با کمک چاب‌گرها به ایجاد ساختارهای
سولوی و در نهایت ارگانها و اندامها، دارای قابلیت
شکل‌دهی هم زمان در ساخت و سرلسله سولوی سه بعدی می‌باشد. در این روش به کمک کامپیوتر و
چاب‌گری اصلاح شده‌ی چاب‌گر کاربرد راه‌سازی سولوی
مانسی در مکانیکی از پیش‌تر از شده و همه
پیشرفت‌های مارک‌سی سولوی و اندازه‌ای
چاب‌گری برای حل مشکلات فیزیکی بشری دارد.

روش جاب زیستی به صورت دیواتو درون بنده رخ می‌دهد و با حداکثر تلاقی جهت مغزی زیستی همه
جاذبه، به مهندسی ساخته‌ها بپردازد.

شکل ۲- ایجاد ساختارهای سه بعدی بر روی سولوی
لایه‌های سلولی

اجزای اصلی در چاب زیستی
فناوری جاب زیستی مانند سایر فناوری‌های معمول چاب،
می‌تواند مناسب با سه نظر اصلی می‌باشد: جوهرهای
کاذغ زیستی، چاب‌گر زیستی.

۹- بیوینک
۱۰- بیوپرپار

۶- پس پرینتینگ
۷- بیولوژی توسعه
۸- بیومتریال

۱- پیش‌کار نسیم
۲- سیاره ماینر
۳- چالی اشاره
۴- پرنیو
۵- پرینتینگ

در مرحله‌ی پیش‌فناوری طرح گسترده‌ی (blueprint)
گونه مورد نظر یک شیب‌سازی رایانه‌ی بر است.
پس از آن نسبت به تغییرات برای درون بنده پیوسته
بودن هنرهای تجاری. این نتایج در این
بافت‌های مدل‌برداری دیده‌اند. در هر مدل
چاب‌گری ساختارهای ایجاد شده توسط
برنامه‌های ساختاری، به شرایط زیستی کاتکی و داده‌های مورد نظر قرار می‌گیرند. سطح دارای شکل‌دهی هم زمان در ساخت و سرلسله سولوی سه بعدی می‌باشد. در این روش به کمک کامپیوتر و چاب‌گری مدل‌برداری شده‌ی چاب‌گر کاربرد راه‌سازی سولوی مانسی در مکانیکی از پیش‌تر از شده و همه پیشرفت‌های مارک‌سی سولوی و اندازه‌ای چاب‌گری برای حل مشکلات فیزیکی بشری دارد.

این ابزار جدید برای ترمین بالیت‌های درن، از همراهی پیشرفت‌های مدل‌برداری قرار گرفته در سه بعدی می‌گردد: شیب‌سازی چاب‌گری ساختار، چاب‌گری ساختاری و میانی چاب‌گری ساختاری. این نتایج در نهایت از همراهی و ترکیب ایندیکاتوری سلولی است به طوری که این روش ساخت آن داراد به کمک بر روی شکل‌دهی یک بافت اطمینان به همه جهت مغزی زیستی به صورت دیواتو درون بنده رخ می‌دهد و با حداکثر تلاقی جهت مغزی زیستی همه جاذبه، به مهندسی ساخته‌ها بپردازد.
کاغذ زیستی

فرآهم سازی بستری که بتوان سلول‌ها را بر روی آن چاب نمود. یکی دیگر از جنبه‌های مهم توجه در این فناوری است، یک سیستم که همان نقش داریست یا ایفا خواهد کرد. باید علاوه بر اینکه سازگاری با سیستم چاب (امکان چاب آمدن بر صورت همراه یا با صورت مناسب و لایه به لایه) خصوصیاتی نظیر زیست سازگاری، شیب‌سازی متریکس خارج سلول‌ها، امکان اتصال به سلول‌ها، ایجاد حمایت مکانیکی لازم جهت نگه داشتن سلول‌های چاب در محل مناسب. امکان نفوذ و حرکت سلول‌ها بر طور فراوانند رشد و توسعت، امکان تخریب و تجزیه توسط بدن پس از تکامل الشکل یافته مورد نظر و همچنین تامین فضای مناسب جهت رساندن مواد غذایی و عوامل رشد به سلول‌ها را دارا می‌باشد [19].

کاغذ زیستی را می‌توان به عنوان بستری مناسب با ویژگی‌های زیستی شرکت در نظر گرفت که فراپریندزیری را داشته باشند. ملاک‌های یک کاغذ زیستی ایده‌آل برای چاب زیستی شامل موارد زیر است:
- قابلیت فراپریندزیری (امکان توزیع به صورت لایه‌ای و جریان سریع)
- یافته به متریکس خارج سلول‌ها (دارا بودن پتیدهای مهم و اصلی و همچنین عوامل رشد مناسب)
- هموشادی (شکل یافته شدن در محل و حساسیت نسبت به تحریک)
- فراهم آوردن امکان جوش خوردن بافت‌ها و توده‌های سلولی (عدم محدود سازی حرکت سلول‌ها)
- قابلیت حفظ شکل
- آپ دوست بودن (نفوذپذیری مناسب و کارامد)
- زیست تخریب پذیری
- مشتقات از طبیعت
- همراه بافت‌ها عوامل تخریب رگنزاپی [17]

با توجه به خصوصیات تم برد، هیدروزول‌ها به عنوان دسته‌ای از مواد عاملی که در مهندسی یافته به کار رفته باید به چشمان مشترک در سلامتی بوده و به دست‌آوردهای جدید سازگاری شوند.

1- Bioprinter
2- Cell suspension
3- Cell Aggregate
4- Differential Adhesion Hypothesis
5- Tissue Liquidity
6- Interfacial Tension
7- Self Organization
8- Self Assembling
اخترنده و ممکنات مقدمه‌ای بروناوری "چاه زیستی" به عنوان روشی نوین در مهندسی پفاف

خود احتمال دارد، فنولوری تابع جوهر آفات به عنوان یکی از فنولوری تابع قدرتمند ممکن است. روش تابع جوهر آفات یک روش غیر تعمیم‌سنج قطعات از کاراکتر اولیت نمودار می‌کند و آن را بر روی یک سیستم توزیع فضایی جوهر دوار. مدلی می‌تواند در سال‌های اخیر کاربرد ان فنولوری به طور مؤقتی آزمایش از زیمت‌های سنی در کلیه و درست در زمینه‌های مهندسی زیستی زیستومن، بیوشناسی می‌کند. در سال‌های اخیر کاربرد ان فنولوری به طور موشیت آزمایش از زیمت‌های سنی در کلیه و درست در زمینه‌های مهندسی زیستی زیستومن، بیوشناسی می‌کند. در سال‌های اخیر کاربرد ان فنولوری به طور موشیت آزمایش از زیمت‌های سنی در کلیه و درست در زمینه‌های مهندسی زیستی زیستومن، بیوشناسی می‌کند.

جایگزینی

استفاده از چاه‌گیری تجاری موجود با اصلاحات جهت تطیف شرایط چاب با سلولها در تحقیقات محیط‌های مورد بهره‌بردار است. پیشگامان چاب با سلولها با توجه به ویژگی‌های چاب با سلولها که به‌طور مناسب اولیت ابری بی‌مرغوبیت و قراردهی دویور و دقت سلولها در سیستم‌های فردی را بهبود می‌بخشد. در مراحل اولیه مطالعه کاراکتریشی به‌طور کلی در این مطالعات و بررسی‌های اولیه اصلاح و طراحی چاه‌گیری می‌تواند این مطالعات و بررسی‌های اولیه اصلاح و طراحی چاه‌گیری می‌تواند این مطالعات و بررسی‌های

روند توسه و مطالعات انجام شده

این رویداد از روش‌هایی که قاده برای قرار دادن سلولها بر پسر رشدشان و درون ساختارهای مانند داریست‌ها باشد می‌تواند در تحقیقات کلیه (51) شیوه باید به عنوان micropositioning یکی از روش‌هایی است.
نتایج استفاده از چاپگرهای جوهر افشان گرمایی برای قرار دادن سلول‌های همبسته در طرح‌های مختلف بر روی سیستم کلاژن و دیواره ناشی از عدم آسیب جدی به سلول‌ها بایستی می‌باشد. این ژنتیک بر روی سلول‌ها دیواره‌کننده سلول‌ها در مطالعه مورد استفاده در سال 2006 در چاپرک \multinozzle system 1) مطرح شد. در این مطالعه، سلول‌های باستانی بیولوژیکی اصلاح شده با قابلیت چاپ پوسته و قطعه‌های مورد نیاز برای پروتئن‌کاری،

1- Thermal inkjet printer
طرح‌های بنا به نگرش‌های مختلف است. در رنگ می‌تواند طبق خواست در محل مناسب پرتاب شود. اگر پرتاب نشده، سولول‌هایی، عوامل رشد، سلول‌های چسبندگی، پی‌ریس و داروی علائمی بر سطح زدنه به جای جوجه استفاده شوند. اجزای مختلف پلاستیکی پی‌فیت پی‌فیت می‌تواند به راحتی در محل خود قرار گیرد و در واقع می‌تواند بافت مشکلی از اجزای مختلف را ایجاد نمود. چاپ‌گرهای تجاری جوجه اشان همچنین قادرند به شرایط کار دنیای پروتزهای را در این زمینه تعريف کردند و در پالر تهیه‌کننده مشغول انجام پرتوش در این زمینه هستند. به طور مثال هزینه‌های پروتزهای تحت عنوان: ترمیم استخوان توسط چاپ زیستی، چاپ کاشتنی گوش، چاپ شاخه‌های عروقی و پروتزه عظیم "چاپ کلیه" می‌باشد.

موردی بر چاپ‌گرهای زیستی

چاپ‌گرهای زیستی یکی از اجزای مهم و پایه‌ای در فناوری چاپ زیستی است. این اجزای از چاپ‌گرهای تجاری با اعمال اصلاحات جهت پیاده‌سازی قابلیت چاپ سلول‌های زندگی است. چاپ‌گرهای معمولی که تا کنون در این فناوری مورد استفاده قرار گرفته‌اند از نوع چاپ‌گرهای جوجه اشان می‌باشند. روشهای چاپ جوجه اشان قادر به ایجاد طرح‌های دقیق با قدرت تفکیک با است. بررسی‌ها در مورد می‌دهد که در چاپ‌گرهای جوجه اشان می‌توانند تفاوت‌های نقشی چاپ در حدود ۲۵-۳۰ میکرومتر است که این ایجاد در حذف ابعاد سلول‌های بیولوژیکی می‌باشد. به علاوه هزینه‌‌های تولید باید به‌جای چاپ‌گرهای تجاری جوجه اشان رگه قاده به چاپ‌گرهای کاربردهای بیولوژیکی و مهندسی بافت به‌جای این سیستم‌های جوجه اشان در زمینه کاربردهای بیولوژیکی و مهندسی بافت باید مورد توجه قرار گیرد. اولین زیست‌سازگاری است که در این سیستم از مواد بیولوژیکی استفاده خواهد شد و باید حداکثر آسیب به آنها بررسد. علاوه بر واپشتسگی خواص و ویژگی‌های سلول‌های استفاده‌ی شرایط کشت سلول‌ها به شدت که گروه و استراتژی‌های مکانیکی که یکی از نگران‌های محور در فناوری چاپ است. همین‌طور قراردادهای به شرایط حساس و سخت به خصوص سلول‌های که باید حالت‌سازگاری انتقال حزارت و آسیب داشته باید. افزایش حزارت به شدت سلول‌های در دسترس موجود است سبب آسیب‌های جدی به سلول و مرگ آن گردید. هرچند در بسیاری از تحقیقات انجام شده ممکن است سبب آسیب‌های چاپ زیستی با بسته‌بندی شده و نه به سلول‌های فراوان چاپزنده است [۲۵]. در توسعه چاپ‌گرهای حرارتی به این ارتقاء هستند. اگر مطالعات نشان دهد می‌تواند نشان داده است که سلول‌ها در مدت زمان کم قاده به حماه شرایط. همین‌طور در این زمینه لازم جهت انتقال حزارت و آسیب کوتاه‌شان پرتاب زمانی لازم جهت انتقال حزارت و آسیب

1- Resolution
2- Computer aided design
3- Computer aided manufacture
4- Tissue manufacturing
ژنتیک هدف ایجاد ساختارهای سلولی با بهترین سیستم‌های جایگزین برای بیماری‌های قلبی-شیرینی است. نخواهند داشت [31]. وجود نورون‌های مکانیکی نیز می‌تواند اثرات مخابر بر سطح‌ها را داشته باشد. سلول‌ها در شرایط معمول قادر به تحلیل آسان‌سازی از فکری‌ها هستند (۱۵ کیلوهترز) والاتر از آن استوانه تحلیل سیستم شکسته و مرگ می‌شود. در اقیما جایگزین بیروالکتریک این نکته با داد مورد توجه قرار دارد. اگرچه سیستم‌ها از مطالعات حاکی از عدم آسیب سلول‌ها در ایجاد مواد آغشته است [۳۱]. سیستم‌ها در اصلاح مقدار فکری بودند [۱۳۱].

مورد بعدی توانایی در بیماری نگهداری است. زیرا که جهت ساخت یک بافت بیولوژیک نیازمند انواع مولکول‌ها و سلول‌ها و زیست مواد است. توانایی یک صابه در پای نگهداری بسیار در بیماری یک بافت بیولوژیک تجزیه و تحلیل را به دنبال آن را (انواع سلول‌ها، پروتئین‌ها، عاملش رشد و موارد به‌طور کامل). در این ساختار هر مورد اگر زیستن ساختار سازگاری سیستم شاب، ژن‌گرای در جهت تعیین فعال شدن راه، حرارتی سیستم به انواع کاربردی با مورد ایجاد دمای بالا و احتمال بیشتر آسیب رسانی و مواد پروتوئن و مواد سازنده زهای حساس به دما و سلول‌ها همراه هستند. با در نظر گرفتن قابلیت ژنتیک رنگی سیستم‌های بافتی بسته به نیازش، پس تا هم گروه که مناسب می‌تواند چاب پای اکثر صابه‌ها بافت سیستم‌های قطره‌ای بر پایه پیزاکتریکی با کتروژنتیک یا اکتوژنتیک [۳۵].

با توجه به نیاز زیستی ساختاری سیستم‌های پایه ژنتیکی، با انواع دیگر، با ایجاد دمای بالا و احتمال بیشتر آسیب رسانی و مواد پروتوئن و مواد سازنده زهای حساس به دما و سلول‌ها همراه هستند. با در نظر گرفتن قابلیت ژنتیک رنگی سیستم‌های بافتی بسته به نیازش، پس تا هم گروه که مناسب می‌تواند چاب پای اکثر صابه‌ها بافت سیستم‌های قطره‌ای بر پایه پیزاکتریکی با کتروژنتیک یا اکتوژنتیک

3- Cell Encapsulation

1- Bulk
2- Nozzle
دندوه ماتریس خارج سلولی طبیعی بدن محیط رشد منابع و راهکارهایی که در دسترس از هیدروژل‌ها هستند به دلیل حساسیت زیادی موجب ایجاد زیرک سلول‌های محیط زیستی می‌شود. امکان ایجاد تغییرات شرایط محیط زیست غیر مطابق با محیط زیست خاص سلول‌های زیرک می‌تواند نتایجی متفاوتی از نگاه استفاده از هیدروژل‌ها داشته باشد.

در میان انواع هیدروژل‌ها که در زمینه مهندسی بافته‌بندی کار می‌شوند، هیدروژل‌های حساس به تغییرات تریم و ترکیبی از ماده‌های ترکیبی در ترکیب با سایر مادها و برای مثال این است که در مدل‌های مختلف در این گروه دارای دمای مختلف زیگینه می‌باشند که در اثر تغییرات شرایط محیط تغییر می‌کند. بنابراین تغییرات ترکیبی و تغییرات محیط بینی تاثیر نور، حضور آنزیم‌ها و حضور عوامل شیمیایی شیمی‌کی به هنگام نگهداری در این مدل‌ها می‌تواند تاثیرات متفاوتی در ساختار و ورای سلول‌های زیرک داشته باشد.

1- Gel Point
پلاستیک و درمان بازیابی نوری

کلاژن در این مورد مناسب ترین پس جهت انتخاب زل مناسب باید نوع سولون بیز در نظر گرفته شود [23]. استفاده از زل ماهی حساس به محتوای فیبر فیبروز در خون ممکن است از طریق قرارگیری این زلها در محیط کشت سولون پس از همایش به دلیل امکان تبادل بیونیکی محیط کشت چندن مطلوب نیست زیرا نیست. می‌تواند شدن ساختار را به دنبال داشته باشد. اما با این حال در برخی مطالعات این دسته زلها مانند آلگینات برای ساخت کاغذ زیستی استفاده شده است [23,24].

ژل‌های طبیعی آزمیز مانند فیبرز در دلیل ساختار فیبری دارای قابلیت خوبی جهت رشد و جذب‌گیری سولون‌ها می‌باشد. تشکیل زل‌های طبیعی در محیط سولون و ترویج نمایندگی به ماده‌گر فیبریز شده از خون می‌باشد. در دمای محیط به سرعت نگهداری و ادامه استفاده از زل طبیعی در مطالعات مرتبط با زنده نشان دهنده پیشرفت دارد. به دلیل قابلیت دسترسی دوشرتر نسبت به سایر زل‌ها محض شده است [25].

در مطالعاتی که از سال 2003 تا کنون در ارتباط با فناوری ژن‌های جهت ساختار سولون‌های سودای حاوی سولون انجام شده است دیدگاه اندازی به بحث کاغذ سولون‌های با همان هیدروفوژ در مورد استفاده پرداختن در این مطالعات سعی خواهد شد که تعیین زل‌های مطلوب از طریق انتخاب زل مناسب به مقایسه سه زل حساس به دمای پرده‌های خودآوری کلاژن به عنوان پلی پرپولیکاژن، آگزور به عنوان پلی پرپورتانس و پلی پروپیلومی طبیعی بر پایه سولون با مانیت از ژل پلی‌پروپیلیکاژن (Pluronic®) که کولوریمیز از نوع س لولیک از پلی اتان آکساید و پلی پروپیل اکساید می‌باشد و در ارائه می‌باشد FDA

خردن نهایی سولون‌های به اعمال شرایط معکوس

بالای‌آمده. زل آرا از سطحی خارج شده [26]. در اولین تجربیات که در دمای استفاده از زل‌ها به عنوان کاغذ زیستی در فرآیند چسب زنده استفاده شد، به مقایسه یک زل استری خاکی از میان N-۳۰ (N-۳۰ isopropylacrylamide-co-N,Ndimethylaminooethyl acrylamide) تحت عنوان K-۷۰ و کلاژن به عنوان یک زل طبیعی پرداخته شد. هر دو این زل‌ها در دمای کم مایع و در دمای محیط و استفاده به غلظت مشابه تغییر فاز می‌دهند.

بررسی تأثیر کشت سولونی حاکی از رفتار بهتر سولونی اندوتنال بر پلی پروپیلومی و جوش خوردن نهایی سولونی اخاطه شده زل در سه روز بعدی کلاژن [27] در استفاده از زل تجاری تحت عنوان F-۲۲۷ Pluronic®‌های فیبریژم می‌باشد. این مطالعات جهت ایجاد ساختار به دستاوردی سولون به شکل مربوط به روش چپ زیستی به کار رفته است. این کولوریمیز نیز از افزایش دما تا دمای محیط تغییر فاز داده و تبدیل به سولون می‌شود [28].

استفاده از کلاژن به عنوان کاغذ زیستی در پروپوسروی ژن‌های جهت ساختار سولون در مطالعات مورد توجه قرار گرفته است. در یک کار تحقیقاتی به بررسی اثر غلظت کلاژن در میزان سولون‌ها و تنشه سولون‌ها در ساختار سه بعدی و همجنسی بررسی میزان تغییرات سولون‌ها درون زل که سبب ایجاد افتراق طرح یا اگلو چپ‌شده می‌شود در پرداخته شده است و تأثیر مستقیم این پارامتر در فناوری سولونی [29] به ابتدا ریسیده [30].

از آن‌ها به عنوان یک زل طبیعی و حساس به دمای این زل‌ها کاغذ زیستی در برخی مطالعات مورد بررسی قرار گرفته است. نمایندگی از ماده آب‌دار شده از هر زنده می‌باشد. اما با این حال در برخی مطالعات این دسته زل‌ها مانند آلگینات برای ساخت کاغذ زیستی استفاده شده است [23,24].
میکرو است [15]. فناوری چاب زیستی فرصت و شانس
ویژه‌ای را برای یافتن و استفاده از طبیعی چاب فراهم می‌کند. هنگامی که به‌همراه
شیب‌های عروق تغییر یابد، چاب شاد بادی به‌علاوه تحقیق
کرده، نشان می‌داد که با انجام شده
و همکاری‌اش طی یک تلاش موافق‌شده، Amir Forgacs
توانستند ساختار عروق شاخه‌دار را توس‌ت چاب نوده‌های
سلول‌های غیرولیستی بی‌ستون انسان ایجاد کنند (شکل 4)
[13]. پس می‌توان نتیجه گرفت که چاب ساختارهای
لوله‌ای مانند قرار داده شده باید برای ارتباط
بودن این فناوری باشند [27].

کاربرد محصولات به دست آمده از چاب زیستی
با توجه به اینکه محصول به‌دست آمده از چاب
پرسته‌ای طبیعی بدن دارد، کلارا راه آن نسبت به سایر
محصولات بی‌ستون انسان ایجاد گردید. این
ارائه داده باعث تغییر روش‌های انجام شده
قامت آمده بر این مشکل مطرح شده است: مشارکت عامل
در عروق درودیتی به‌کار بردن روش‌های گزینه‌گیری به
کاشت ساختار درون بدن و تغذیه ایکسیونال سالولهای
اندودینال. هیچ کدام از این استراتژی‌ها نمی‌تواند به طور
ارضایی کننده باشد زیرا ترخ ایجاد عروق
درون بافته به‌طور طبیعی پیشین است. لایه‌های
پیشین جهت ساختار درون داریسته‌های جامد چه
اصلاح گرایی و تغییر سالولهای صورت گرفته است. در
حقیقت، پیژورون موثر درون یک بافت ممکن نخواهد و
مگر اینکه شیب‌های عروق درون آن وجود داشته باشد
[22]. پس توجه به این باید مشخص کنند. نگران
گردیدن چاب نوده در این جهت باشد. انسان با استفاده
از چاب زیستی در دانش‌ها و سیستم‌های دانش‌پژوهانی
ورود و تغییر شدید در این روش‌ها باشد. با

d) اساس با این نشان می‌داده که نمی‌توان چاب شاد باشند

چاب نوده باعث بودن این فناوری شده باشد.

1- Biomatirce
2- Intermediate
شکل ۳- چاب‌پک ساختاری یک پهپاد ساخته شده بر اساس مدل به شکل نشان داده شده در حدود ۹ mm

تولید و بازسازی و جایگزینی بانفتهای کم‌موسوم در پوست‌های معمولی گاهی از عفونت نیاز به بیماری‌های مصنوعی یا باعث نیاز به بیماری‌های مصنوعی می‌شود. در این روش، اگرچه باعث نیاز به نیاز به بیماری‌های مصنوعی می‌شود، اما به دلیل خاصیت فیزیولوژیک و طبیعی بانفتهای سولولی

مصروف آراشی

زیباسازی پوست و پوست‌های ناهایت در حال رشد است و با آغازین سنت جمعیت در حال رشد، افزایش خواهش بانفتهای چاب‌پک ساخته شده بر اساس مدل به شکل نشان داده شده در حدود ۹ mm

تعیین بانفتهای وزنها و عملکرد آنها در بانفتهای هدف

جمع‌بندی و جراحی آینده

چالش‌های پیش رو برای فرآیند مهندسی بانفتهای شامل پیش‌تر ترکیب سولولی و عوامل رشد، شرایط کشت و زیست‌نیاز برای مشکلات بالینی می‌باشند. بسیاری از زیست‌نیاز محدود استفاده شده در مهندسی بانفتهای خواسته‌ای از خواص فیزیولوژیک و طبیعی بانفتهای سولولی

I- Regenerative Medicine
پیروی می‌کند. این جنبه‌ها زیست تقلیدی یا نامیده شده و توسیع روش‌های نانو پوست‌کنولوژی بشر می‌شوند [6]. با نانومدل‌هایی که تاکنون صورت گرفته است و همگنی نتایج در نخواندن به دست آمده در مدل کوانتوم، می‌توان ایده‌آلی را پیش‌برد در این زمینه بیان کند. به طور شناختی می‌باشد. از نظر نهایی مهندسی بافت تریدیک سازه به طوری که بتوان اندام‌های جایگزین اعضای بدن را با نهایت تشکیل به چهار اصل در محیط برون تن ساخت و به بدن متصل کرد. چاب اعضای نه تنا می‌تواند در محیط برون تن اجرا شود، بلکه با روش‌های ابزارهای کلینیکی خاص می‌توان در محیط درون تن نیز این فرآیند را انجام داد و در واقع جراحی را بر یافته چاب زیستی انجام داد به این ترتیب شویدم از جراحی نوین را بر یافته چاب زیستی درون تن اجرا نمود [22] و در نهایت روالی ساخت زیستی رباتیک در حضرت ظنا و آسیب می‌تواند جراحی را به‌طور کاملاً متفحه کند [18].

چاب اعضا نیازی به سول‌های نباید ندارد به طوری که هم می‌توان از سول‌های نباید استفاده نمود و هم از سول‌های بالغ. فاکتور یک اعضا نیاز به اندازه ۱۸ ساله برای رسیدن به بلع‌کار کاملاً نیاز خواهد نمود. به لحاظ باید تنوری یک انسان کامل را می‌توان در طول چند هفته ساخت. مغازه‌ای نیز می‌توان با پویا‌های جایگزینی نمود.

دانشمندان اخیراً نشان داده‌اند که چاب زیستی اعضای بدن با ساختن لایه به لایه بافت‌های پوست‌کنولوژی با کمک طراحی رایانه‌ای و چاب‌گرهای زیستی یک فناوری قابل انجام است. اگرچه این فناوری بین رشته‌های در حال حاضر در ابتدا را خود قرار دارد ولی با شتاب فراوانی رو به رشد می‌باشد.

جشن‌نامه آینده فناوری چاب زیستی، ساخت بافت‌های وانداماهی پیچیده دارای شاخه‌های عروقی مانند کیسه، قلب، کبد و ... می‌باشد که برای نه یه این هدف باید گام‌های اولیه با ساخت بافت‌های ساده‌تر در ابعاد کوچک‌تر برداشته شود. با توجه به این نظریه که اکثر بافت‌های این می‌توانند از سرم‌کردن ساختارهای

1- Biomimetic
2- In Situ Robotic Biomanufacturing