آمار برای پزشکان: همبستگی و رگرسیون
محمدرضا پارسایان، حمیده موسی پور، فریده حسین‌پناه

به عنوان یک پزشک پرمشغله که هر روز بیماران زیادی را در مطب شلوغتان می‌بینید، سوالات زیادی نیز پرایتان پیش می‌آید، اما گاهی فرصت می‌کنید سری به ادبیات پزشکی تخصصی خود بزیند. شما به خوبی می‌دانید که طبیعتی استفاده از مطالعات و روا و روشی می‌تواند نقش مهمی در طبیعتان در دنیای پیچیده فعالیت باید کند و لیکن می‌خواهید از ویژگی‌های بیماران که با یک بیمارین نیز می‌دانید که به کنار برد نداده

مقالات نیازمند درک مفاهیم آماری است.

امروزه آشنایی با نظرآورآور و درک اصول و مفاهیم آماری آن نه برای داشتن یک روشکردن علمی در حیطه تخصصی خود لازم است، بلکه نظرآورآور آماری (که ما اجازه می‌دهد از تجربه از همین خطاموزی) جزئی از تفکیک تایید از طبیعت علمی است و پزشکان باید از پیش باید فهم و تقد در ادبیات پزشکی پیش رویان به درک مفاهیم پایه و کاربردی آمار پزشکی نیازمندند.

پزشکی مبتلا برخواهد، نه فقط را پزشکان که امروزه می‌روند تا جهان غلیب و رایگان گفتمان پزشکی دنیا باشد، ریکرد عینی آن، پیش از پرشنکان را نیازمند درک نظرآورآور و مفاهیم اصول پایه آن خواهد کرد که از اینکه چه کاری از تفسیر را مجموعه علم بالینی متفاوتی و آمار یان کردند.

ممکن است به خوبی ندانید که چگونه با ایجاد اطلاعات آماری ذکر شده در مقالات را تفسیر کند. ما نیز با شما موافقیم که آمار مفاهیمی بسیار فراورده در این رده‌ها چنین مصروفه در این رشته شناخت است، به‌وجود آگر فراورده بر فرمولوها و مفاهیم مکسیم که تأکید شود با کاربردی بالینی مفاهیم آمار پزشکی مقالات حاکم جهت آشنایی شما با تفسیر آماری برای استفاده در استدلال‌های بالینی و افزایش توانمندسی در فهم و ارزیابی تفاوت‌های مقالات پزشکی طراحی شده است. در این مقاله هر مفاهیم آماری همبستگی و رگرسیون که کاربرد فراوان در ادبیات پزشکی دارند، انتخاب شده و در قالب مثال‌های بیانی مماس در حوزه دیابت و شیوع توضیح داده شده است.

ایمید که این پرونده برکت اساس اساسی جزء نیست که پرشنکان به‌همبند یا در طبیعت بالینی روزانه بدردشنان بخورند، از مجموعه باورها ویاکیات کنار بگذاریم.

متن‌بندی نوشته‌نویسی:
- ۱- مرکز تحقیقات‌گذار، پژوهشگاه علوم غدد و متابولیسم، دانشگاه علوم پزشکی تهران
- ۲- مرکز تحقیقات پیشگیری و دوران‌سازی پزشکی نوین، پژوهشگاه علوم غدد و متابولیسم، دانشگاه علوم پزشکی شهید بهشتی

**پژوهشگاه علوم غدد و متابولیسم، دانشگاه علوم پزشکی تهران، کمیته: ۷۸۱۵۹۱۷۱۰۳۸۲۶۲۰۰۲۰۰۱۸۸۲۲۰۲۰۰ۡ١٦١٥/٥/١٣٩١/۱۰:٠٠

درخواست اصلاح:
- ۱۰/۶/۱۳۹۱/۱۰:۰۰

تاریخ دریافت:
- ۱۵/٦/١٣۹۱/۱۰:۰۰

دریافت نهایی:
- ۱۰/۶/۱۳۹۱/۱۰:۰۰

نام:
- پژوهشگاه علوم غدد و متابولیسم

پست الکترونیک:
- dr_mosapour@yahoo.com
همیستگی

می‌دهم. پرگوزن دری، تکنیک آماری دیگری است که در بررسی ارتباط منجر به خصوصیات بیشتری پیش‌بینی کردن به کار می‌رود. پرگوزن و همیستگی در روندی یک سکاندن. در واقع در چنین جنبه‌هایی می‌تواند هر فرد یک جفت منجر داریم که ارتباط آنها را به‌طور می‌کند. پرگوزن یک مثال بالینی معلوم آن ترتیب دیابت را در نظر گرفته‌ها می‌دانند. Tحمان طور که (ADA) (انجمن دیابت (آمریکا) بالاتر از 126 را به عنوان معیار تشخیص WHO 2019) توصیه به انجام نموده است. در حالت کاهش دیابت می‌باشد.

6. Isolated Post-challenging Hyperglycemia

1.2-h Post- 75-g Oral Glucose Load Glycemia
2. Fasting Plasma Glucose
3. Symptom Scores
4. Prediction Rules
5. در بررسی رابطه میانگین های کیفی(اسمی با پایه) از آزمون کای دو استفاده می‌شود. این آزمون وجود هر نوع ارتباط را بین دو متغیر بررسی می‌کند. در تحلیل کاپا، البته با منجری به منجری‌های ریشه‌ای نیز مانند اسمی ناگه می‌شود و آزمون مایه‌ای را به عنوان نماینده.
مقادیر متغیر وابسته را روی محور Y نشان می‌دهیم.

۱- لازم به ذکر است که نام دیگری ضربه همبستگی پرپرس است و در موارد استفاده می‌تواند در نظر گرفته شود.

بایست بدانید که نام همبستگی‌های اسپرینی رزپرسی عددی به‌جای زیبایی ضربه همبستگی نشان می‌دهد. این عدد نشان‌دهنده فردی که در بین آنها از آنها دارای تعداد بیشتر از دیگری در مقادیر پایین و سریع‌تر از دیگری تا مقادیر بالا افزایش یابد، تا اگر یک انتساب قوی وجود داشته باشد این انتساب خطی تست و استفاده از این انتساب ضریب همبستگی می‌تواند کاربرد کننده باشد.

۲- مقدار گزارش‌ها می‌تواند در صورتی که در داده‌ها بیش از ۱۰۰ باشد، میزان اطمینان را نشان دهد که جمله‌ای ثابت است. این عدد با توجه به تعداد بیشتر از دیگری در مقادیر بالا افزایش یابد.

۳- همبستگی‌های معنی‌داری میانگین اعداد چهارم در استفاده در داده‌ها بیش از ۱۰۰ باشد، میزان اطمینان را نشان دهد که جمله‌ای ثابت است.
مدل سازی و پیش‌بینی کردن

باید سوالی را که در بالا ناشی می‌شود، بکه‌هایی و FPG را پیش‌بینی کنیم. آیا این می‌توانیم FPG را در میزان 2-hPG تحت تأثیر عمومی چون سن، جنسیت و...

میزان تغییرات چون در میزان آن توسط متغیرهای دیگری چون hPG

سنسیتی پیش‌بینی‌های می‌شود که آنها را متغیرهای FPG

پیش‌بینی کننده می‌نامیم.

همان‌طور که در ارژی‌های معمول، انتقاد اثرات و فاصله اطمنان آن اطلاعات پیش‌بینی نسبت به پ-nvalue

ما قرار می‌دهیم. این موضوع در مورد ضریب همبستگی و فاصله اطمنان نیز صدق است. به عنوان مثال مطالعه‌ای

که در می‌کند که به دست آمده و فاصله اطمنان 95%

مربوط به ترتیب رابطه 0.50/0.50 و نتیجه

پک انتساب را در تفسیر همبستگی، استنباط رابطه علیه از همبستگی است. در جای که وجود همبستگی از رازا به معنای وجود رابطه علیه نسبت و این تحلیل بیشتر در مرحله تولید یک فرضیه علیه با کار می‌رود، این

2-hPG و FPG، P-nvalue 2.50 یک

همبستگی دارد اما رابطه علیه بلند از وجود ندارد.

یعنی هردو در انتساب پایه نیستیم اما یکی از

دیگری نیست. در حقیقت استنباط یکی از رابطه علیه بین

متریک غیر از همبستگی قوی به شیار دیگری نیز

نیازمندی مثل مقدم به معنی و (اصول

در اپیمیولوژی) پس به عبارت دیگر، رابطه استنباط علیه

همبستگی لازم است. اما وجود همبستگی دلال بر وجود

رابطه علیه نیست.

رگرسیون

اغلب پیش‌بینی‌کردن برای ما مهم است. این مفاهیم

با توجه به اینکه اگر بیمار کاندید نشده، کرکد، کمک به

کدام بیمار بهبود می‌یابند، کدام نه و... مثال تحلیل

رگرسیون
مقدار پاسخی که از معادله با دست می‌آید، میزان متغیر X‌ پاسخ تحت پیش‌بینی مدل است (مقدار Y مناسب با Y) و مورد نظر روی خط گرسیون که این به مقدار واقعی پاسخ (مختصات خود نقطه) متفاوت خواهد بود. بنابراین

\[Y = \frac{aY + bY}{2Y + 2Y} \]

مقدار برابر با دست می‌آید، میزان متغیر X و Y مسأوی یا دست می‌آید، Mجة دیات و لیبید ایران، دو ماهنامه مهر–آبان ۱۳۹۱، دوره ۱۲ (شماره ۱)
پیش‌بینی ابتلا به بیماری عروق کرونر بر اساس
عوامل خطر مربوط

Western Collaborative Group Study

بیماری عروق کرونر براساس عوامل خطر مربوط برداخته
به بیان رگرسیون لجستیک، چه در این مطالعه، ابتلا به بیماری عروق کرونر (پیک متغیر دوختانه) و
متغیرهای مستقل شامل تیپ خونی، سطح ایمنی، سن و میزان عوامل مختلف متغیر داده که احتمال رگرسیون لجستیک به متغیرهای

عوامل خطر مربوط با توجه به مدل معنی‌داری داشتند.

با استفاده از برآیش معادله رگرسیون می‌توان تغییرات متغیر پاسخ (PG) را که مربوط به سطح از
متغیرهای مستقل و یا مربوط به کل متغیرهای مستقل باشد را محاسبه کرد. در این مثال، T2PG
اولین متغیر به کار رفته در مدل و T2PG با توجه به مدل اضافه شده است، 0.100 Detected
با قدرت تبیین مدل اضافه شده در مجموع مدل 47/4
تغییرات تابعی - تغییرات متغیر دیگر را توضیح
به طور مستقل قلمی از تغییرات متغیر دیگر را توضیح
می‌دهد. اطلاعات در مورد قدرت پیش‌بینی مدل رگرسیون
چندگانه نمی‌دهد و برای ارزیابی قدرت پیش‌بینی مدل
باید از R2 به مدل چندگانه توجه کنم. به عنوان مثال
هرچند

می‌باشد. به آنها مدل‌های "رگرسیون لجستیک"

می‌گویند.

پیش‌بینی ابتلا به بیماری عروق کرونر بر اساس
عوامل خطر مربوط

Western Collaborative Group Study

بیماری عروق کرونر براساس عوامل خطر مربوط برداخته
به بیان رگرسیون لجستیک، چه در این مطالعه، ابتلا به بیماری عروق کرونر (پیک متغیر دوختانه) و
متغیرهای مستقل شامل تیپ خونی، سطح ایمنی، سن و میزان عوامل مختلف متغیر داده که احتمال رگرسیون لجستیک به متغیرهای

عوامل خطر مربوط با توجه به مدل معنی‌داری داشتند.

با استفاده از برآیش معادله رگرسیون می‌توان تغییرات متغیر پاسخ (PG) را که مربوط به سطح از
متغیرهای مستقل و یا مربوط به کل متغیرهای مستقل باشد را محاسبه کرد. در این مثال، T2PG
اولین متغیر به کار رفته در مدل و T2PG با توجه به مدل اضافه شده است، 0.100 Detected
با قدرت تبیین مدل اضافه شده در مجموع مدل 47/4
تغییرات تابعی - تغییرات متغیر دیگر را توضیح
به طور مستقل قلمی از تغییرات متغیر دیگر را توضیح
می‌دهد. اطلاعات در مورد قدرت پیش‌بینی مدل رگرسیون
چندگانه نمی‌دهد و برای ارزیابی قدرت پیش‌بینی مدل
باید از R2 به مدل چندگانه توجه کنم. به عنوان مثال
هرچند

می‌باشد. به آنها مدل‌های "رگرسیون لجستیک"

می‌گویند.

پیش‌بینی ابتلا به بیماری عروق کرونر بر اساس
عوامل خطر مربوط

Western Collaborative Group Study

بیماری عروق کرونر براساس عوامل خطر مربوط برداخته
به بیان رگرسیون لجستیک، چه در این مطالعه، ابتلا به بیماری عروق کرونر (پیک متغیر دوختانه) و
متغیرهای مستقل شامل تیپ خونی، سطح ایمنی، سن و میزان عوامل مختلف متغیر داده که احتمال رگرسیون لجستیک به متغیرهای

عوامل خطر مربوط با توجه به مدل معنی‌داری داشتند.

با استفاده از برآیش معادله رگرسیون می‌توان تغییرات متغیر پасخ (PG) را که مربوط به سطح از
متغیرهای مستقل و یا مربوط به کل متغیرهای مستقل باشد را محاسبه کرد. در این مثال، T2PG
اولین متغیر به کار رفته در مدل و T2PG با توجه به مدل اضافه شده است، 0.100 Detected
با قدرت تبیین مدل اضافه شده در مجموع مدل 47/4
تغییرات تابعی - تغییرات متغیر دیگر را توضیح
به طور مستقل قلمی از تغییرات متغیر دیگر را توضیح
می‌دهد. اطلاعات در مورد قدرت پیش‌بینی مدل رگرسیون
چندگانه نمی‌دهد و برای ارزیابی قدرت پیش‌بینی مدل
باید از R2 به مدل چندگانه توجه کنم. به عنوان مثال
هرچند

می‌باشد. به آنها مدل‌های "رگرسیون لجستیک"

می‌گویند.
Western Collaborative Group

Table 1 - Outcomes of comparing differences in levels of HSPT levels in patients with different characteristics

<table>
<thead>
<tr>
<th>OR (b)</th>
<th>p-value</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.27</td>
<td>0.004</td>
<td>Finger Size</td>
</tr>
<tr>
<td>1.56</td>
<td>0.004</td>
<td>Finger Length</td>
</tr>
<tr>
<td>1.32</td>
<td>0.004</td>
<td>Finger Width</td>
</tr>
<tr>
<td>1.41</td>
<td>0.004</td>
<td>Finger Texture</td>
</tr>
<tr>
<td>1.29</td>
<td>0.004</td>
<td>Finger Shape</td>
</tr>
<tr>
<td>1.35</td>
<td>0.004</td>
<td>Finger Mobility</td>
</tr>
<tr>
<td>1.43</td>
<td>0.004</td>
<td>Finger Temperature</td>
</tr>
<tr>
<td>1.51</td>
<td>0.004</td>
<td>Finger Sensitivity</td>
</tr>
<tr>
<td>1.38</td>
<td>0.004</td>
<td>Finger Strength</td>
</tr>
<tr>
<td>1.45</td>
<td>0.004</td>
<td>Finger Coordination</td>
</tr>
</tbody>
</table>

Western Collaborative Group

Table 2 - Outcomes of comparing differences in levels of HSPT levels in patients with different characteristics

<table>
<thead>
<tr>
<th>OR (b)</th>
<th>p-value</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.27</td>
<td>0.004</td>
<td>Finger Size</td>
</tr>
<tr>
<td>1.56</td>
<td>0.004</td>
<td>Finger Length</td>
</tr>
<tr>
<td>1.32</td>
<td>0.004</td>
<td>Finger Width</td>
</tr>
<tr>
<td>1.41</td>
<td>0.004</td>
<td>Finger Texture</td>
</tr>
<tr>
<td>1.29</td>
<td>0.004</td>
<td>Finger Shape</td>
</tr>
<tr>
<td>1.35</td>
<td>0.004</td>
<td>Finger Mobility</td>
</tr>
<tr>
<td>1.43</td>
<td>0.004</td>
<td>Finger Temperature</td>
</tr>
<tr>
<td>1.51</td>
<td>0.004</td>
<td>Finger Sensitivity</td>
</tr>
<tr>
<td>1.38</td>
<td>0.004</td>
<td>Finger Strength</td>
</tr>
<tr>
<td>1.45</td>
<td>0.004</td>
<td>Finger Coordination</td>
</tr>
</tbody>
</table>

Notes

- The study was conducted in the Western Collaborative Group, involving patients with different characteristics.
- The outcomes were compared using statistical methods to determine any significant differences.
- The results indicate that there are significant differences in HSPT levels among patients with different characteristics.

References

به مقدار ضریب همبستگی نیز نیاز داریم. در برآورده
معدل‌های رگرسیون تنها نه‌تنها معنی‌داری ارتباط نبوده
قدرت رابطه و یا درصدی از تغییرات متغیر پاسخ که به
وسبت متغیرهای پیش‌بینی گزارش می‌شود باید مورد
توجه قرار گیرد.

بررسی قدرت ارتباط بین یک یا چند متغیر پیش‌بینی
و متغیر پاسخ می‌پردازد و می‌تواند در ارائه‌مدلهای
پیش‌بینی مانند مثال‌های بالا مفید باشد. چنین مدل‌هایی
می‌توانند در تصمیم‌گیری‌های بالینی بسیار مهم باشند. در
اینجا بهتر است مجدداً ناپیدا کندیم که به
اطلاعات زیادی در مورد قدرت همبستگی به ما نمی‌دهد و

شکل 1- نمودار براکش 2-h PG در مقیاس سن برای افرادی که براور 126 (mg/dl) FPG دارند.

شکل 2- نمودارهای براکش به ازای مقادیر مختلف فرضی از ضرایب همبستگی
شکل ۳- عرض از مبدا و شیب در معادله رکوردپیوسته $Y = \frac{1}{2}$ واحد افزایش در Y به ازای هر واحد افزایش X.

شکل ۴- نمایش مقادیر واقعی و پیشبینی شده بر اساس خط رگرسیون به ازای نقطه $X = 5 = 0$.

شکل ۵- نمایش مقادیر باقیمانده (طول خطوط عمودی بین مقادیر واقعی و مقادیر پیشبینی شده)