بررسی اثرات آنتی اکسیدانی Semelil
یک کارآزمایی پالینی دوسوکور

محیوبه همت آبادی، سهیب بخشایشی، محمد عبدالللهی، رامی حسینی، غزال خوشنویسی، ایمن عزتی، بابر لاریجانی

چکیده

مقدمه: دیابت نوع ۲، یکی از شایع‌ترین بیماری‌های مزمن در جهان و همراه با عوارض متعددی می‌باشد که تنها برای بیمار ناتوان کننده و مراحم است. بکار بردن فارمود را بر سیستم سلامل جامع وارد می‌کند. یکی از سازوکارهای مطرح در ایجاد عوارض دیابت، عدم تعادل بین عوامل اکسیدان و آنتی اکسیدان در بدن می‌باشد و مطالعات متعددی جهت تصحیح این تأخیر در این فرآیند و در نهایت کاهش عوارض مزمن انجام گرفتند. روشهای در این کارآزمایی پالینی دوسوکور، ۶۱ بیمار مبتلا به دیابت که تحت داروی دیابت با داروهای خوراکی کاهش‌دهنده قنده خورده بودند به دو گروه تقسیم و اثرات آنتی اکسیدانی Semelil (آنتی پارس) که یک ترکیب گیاهی جدید و مؤثر در داروها جذب پای دیابتی می‌باشد، در مقایسه با دارونیا مورد مطالعات قرار گرفت. برسی‌های اکسیدانی‌های تجویزی این دو گروه نشان داد که، کلبیوز همراه با اندازه‌گیری سطح اکسیدانی‌های HS-CRP, TNF-α, هم و فورمیسین انجام شد و وضعیت اکسیدانی‌های تجویزی دارویی، آنتی اکسیدانی تجویزی، پروتئین گلوکوز و تریگلیسرید و سرم از دیابت قرار گرفت.

پایه‌ها: به چیز تغییر در سطوح دوکسیکوتوزین (P = 0/05) و تریگلیسرید و اکسیدانی موی دیابتی روي نداد.

نتایج‌گیری: سازوکارهای دیابتی بجز اثرات آنتی اکسیدانی در بهبود زخم‌پای دیابتی ناشی از آنتی پارس دخالت دارند.

واژگان کلیدی: دیابت، آنتی پارس، اثرات آنتی اکسیدانی Semelil، آنتی پارس، اثرات آنتی اکسیدانی

نشریه: انتقالیسی این مقالات در مجله داروی دوره ۱۷ شماره ۱ تابستان ۱۳۹۲ به چاپ رسیده است.

۱- مرکز تحقیقات بدنتودری و منابع‌هم‌نیرو، دانشگاه علوم پزشکی تهران
۲- مرکز تحقیقات دانشگاه داروسازی، دانشگاه علوم پزشکی

نشانه‌های تهران: خیابان کارکرده، بیمارستان دکتر شریعتی، طبقه پنجم، مرکز تحقیقات غذای دیابت و منابع‌هم‌نیرو دانشگاه علوم پزشکی تهران، تلفن: ۰۲۱۸۷۴۲۰۰۰، تلفن: ۰۲۱۸۷۴۲۰۰۴۱، پست الکترونیک: emrc@tums.ac.ir

تاریخ پذیرش: ۸۸/۱۰/۲۸
تاریخ درخواستصلاح: ۸۸/۱۰/۲۰
تاریخ دریافت: ۸۸/۱۰/۱۰
مقامه

دبایت از شاخص تیم بیماری های متابولیک در سراسر جهان می‌باشد. در دبایت نمای 2 با دبایت غیروبه‌رسانده به‌سانح، علایکم چنین می‌تواند باعث گسترش در هم‌سازی لک‌های سیمی شود. هم در دبایت 1 و هم 2 تعداد دتیب‌های اکسیدیون به شکل واضح آزار فازیشی می‌یابد. [1] استرس اکسیدیون ناشی از عدم تولید غلیظ شدید در اتیوم اندازه‌گیری دی اکسیدیون بدن می‌باشد. ارتباط بین سطح بالایی فنیدون و فعالیت استرس اکسیدیون در مطالعات مختلف نشان داده است. [2] عوامل متعددی در افزایش تولید اکسیدیون آزاد در نشانه می‌باشد. از جمله آن‌ها سطح فنیدون است که با سازوکارهای مختلف باعث فعالیت شدن سیرویان بروتو به استرس اکسیدیون می‌شود. در دبایت 1 و 2 بررسی‌های گروهی و سطح هموسیستوئینی پلاسمای از دنبال ارتباط وجود در دبایت عوارض شدید و اکسیدیون مرتبط با هموسیستوئینی در آسیب عروقی دیده می‌باشد. [3]

روش‌ها

افراد مورد مطالعه

تعداد 61 بیمار که برای مراجعه WHO مبتلا به دیابت نوع 2 بوده و در کلینیک دیابت دبایت بیمارستان شریعتی تهران تحت مطالعه قرار گرفته (از مهر 1378 تا اسفند 1378) وارد این طرح شدند. پس از انتخاب بیماران، به تعداد آن‌ها اطلاعات جامع در مورد مطالعه داده شد و فرم رضایت‌نامه کسب کننده مطابعه بود. برلیک این مطالعه به تأیید کمیته‌های انگلیسی و ایرانی به همراه قرار گرفت. برای بررسی افراد از مطالعه شد سامان رودیزیا تشکیل شد. [4]

نگرش و تغییرات مربوط به CRP

استرس اکسیدیون ران می‌دهد. از سیستم‌های التهابی و WBC، تغییرات جراحی و التهابی بیماران در سطح هموسیستوئینی و CRP جالب است. [5]

انواع عواقب دیابت

اثرات فعال دبایت متابولیک و اکسیدیون، خود را با علاجی مانند افزایش فشار خون، سیستولیک و پلاسمای و Highly Sensitive-CRP نیز افزایش در مقدار افراد افزایش در مقدار افزایش و WBC و تغییرات جراحی بیماران و دیگر نشانه‌های استرس اکسیدیون نشان می‌دهد. از سیستم‌های التهابی

آزمایشگاه‌های مبتلا به آزمایش‌گاهی در بررسی اولیه، بررسی‌های شام مطالعات فردی، سوابق بیماران و منجر به پژوهش‌های مجازی طرح تکمیل شد و مطالعات بالینی کامل شامل بررسی دقیق از نظر
آزمایش‌های پایه‌ای خون کامل: فن‌نوازی، انسلین ناشتا، بروکفایل، تی‌پی‌آ، تی‌آ اکسیداتیو، اکسیدایشن رضفی آنتی اکسیدان‌های تام، پریکسی دیسمی‌های چربی، اندازه‌گیری سطح دوکسی‌گوتورژن و گرده‌های کربنیلی در آزمایش‌های مراحل تحقیقات دانشگاه داده شد.

۱- آزمایش‌های مرجع: در این آزمایش‌ها، با استفاده از نرم‌افزار SPSS، نمونه‌های داده‌برداری شد و سپس مطالعه رابطه میان داده‌ها انجام گرفت.

۲- پراکسیداسیون جعفری (MDA): Malondialdehyde

۳- پراکسیداسیون جعفری (MDA): Malondialdehyde

۴- اکسیداسیون جعفری (MDA): Malondialdehyde

۵- اکسیداسیون جعفری (MDA): Malondialdehyde

۶- اکسیداسیون جعفری (MDA): Malondialdehyde

۷- اکسیداسیون جعفری (MDA): Malondialdehyde

۸- اکسیداسیون جعفری (MDA): Malondialdehyde

۹- اکسیداسیون جعفری (MDA): Malondialdehyde

۱۰- اکسیداسیون جعفری (MDA): Malondialdehyde

۱۱- اکسیداسیون جعفری (MDA): Malondialdehyde

۱۲- اکسیداسیون جعفری (MDA): Malondialdehyde

۱۳- اکسیداسیون جعفری (MDA): Malondialdehyde

۱۴- اکسیداسیون جعفری (MDA): Malondialdehyde

۱۵- اکسیداسیون جعفری (MDA): Malondialdehyde

۱۶- اکسیداسیون جعفری (MDA): Malondialdehyde

۱۷- اکسیداسیون جعفری (MDA): Malondialdehyde

۱۸- اکسیداسیون جعفری (MDA): Malondialdehyde

۱۹- اکسیداسیون جعفری (MDA): Malondialdehyde

۲۰- اکسیداسیون جعفری (MDA): Malondialdehyde
پاته‌ها

از 21 بیمار شرکت کننده در این مطالعه، 31 بیمار (80/8\%)
در گروه داور و 30 بیمار (74/2\%) در گروه داوونما قرار
داشتند. نزدیکی این تعداد با < 0.05 نوع ضروری و
جمعیت است. سه‌رواله‌های از هم‌بین جمعیت مشخص شدند
از جمله: "شانه دام نداشت، کاهش مصرفی دوگره و
وارود درمان خاصی در دو گروه نداشتند.

WBC پاته‌های هم‌طوری شکل هموگلوبین، ویتامین C
و نیکوئید سلول‌های بلوکسیپاتی همراه با
CRP، HS-CRP و یافته‌های میکروبی است. تحقیق
در جدول 3 نمایش داده شده. در هر دو گروه مقدار دانه و
وارود درمان ایجاد کننده تنها این گروه مکرر به سطح تی گلیسرید

جدول 1 - مشخصات بالای افراد مورد مطالعه در دو گروه داور و کنترل

<table>
<thead>
<tr>
<th>متغیر بالا (پایه)</th>
<th>گروه داور</th>
<th>گروه کنترل</th>
</tr>
</thead>
<tbody>
<tr>
<td>سن (سال)</td>
<td>6 ± 5</td>
<td>6 ± 5</td>
</tr>
<tr>
<td>طول دانه بیلی‌بی دیابت (سال)</td>
<td>7/6 ± 1/7</td>
<td>7/6 ± 1/7</td>
</tr>
<tr>
<td>وزن اولیه (kg)</td>
<td>63/7 ± 11/7</td>
<td>63/7 ± 11/7</td>
</tr>
<tr>
<td>نامه توده بدن (kg/m²)</td>
<td>28/2 ± 3/9</td>
<td>28/2 ± 3/9</td>
</tr>
</tbody>
</table>

* مقدار از این سه به شکل میانگین ± انحراف معیار می‌باشد.

تعداد گروه داور: 31 بیمار دانه.

تعداد گروه کنترل: 30 بیمار دانه.
جدول ۲- میانگین پارامترهای همانتولوزیک و بیوشیمیایی و اتفاقی همراه با سطح هموزسنتین. انسلولین

<table>
<thead>
<tr>
<th>متغیر</th>
<th>گروه دارو</th>
<th>قبل از دارمان</th>
<th>پس از دارمان</th>
<th>قبل از دارمان</th>
<th>پس از دارمان</th>
</tr>
</thead>
<tbody>
<tr>
<td>همتودایل‌های سفید</td>
<td>۷۶۳۳±۰/۴۴</td>
<td>۷۶۱۳±۰/۴۴</td>
<td>۷۲۲±۰/۵۷</td>
<td>۷۲۵±۰/۵۷</td>
<td></td>
</tr>
<tr>
<td>هموزسنتین (gr/dl)</td>
<td>۱۲/۹±۱/۳</td>
<td>۱۳/۸±۱/۵</td>
<td>۱۳۰±۱/۶</td>
<td>۱۳۸±۱/۶</td>
<td></td>
</tr>
<tr>
<td>پلاکت</td>
<td>۲۸۸/۸±۰/۶۳</td>
<td>۲۸۳/۷±۰/۶۲</td>
<td>۲۷۶/۷±۰/۵۹</td>
<td>۲۸۶/۷±۰/۶۲</td>
<td></td>
</tr>
<tr>
<td>فند ناشتا (mg/dl)</td>
<td>۱۴۸±۰/۴۶</td>
<td>۱۵۶±۰/۴۸</td>
<td>۱۵۶±۰/۴۸</td>
<td>۱۵۶±۰/۴۸</td>
<td></td>
</tr>
<tr>
<td>تری‌گلیسرید (mg/dl)</td>
<td>۷۸±۱</td>
<td>۸±۱</td>
<td>۸±۱</td>
<td>۸±۱</td>
<td></td>
</tr>
<tr>
<td>کلسترول</td>
<td>۱۲۳±۰/۵۳</td>
<td>۱۳۲±۰/۵۴</td>
<td>۱۳۲±۰/۵۴</td>
<td>۱۳۲±۰/۵۴</td>
<td></td>
</tr>
<tr>
<td>کراتینین (IU/L) AST</td>
<td>۱۷۶±۰/۶۱</td>
<td>۱۸۱±۰/۶۲</td>
<td>۱۸۱±۰/۶۲</td>
<td>۱۸۱±۰/۶۲</td>
<td></td>
</tr>
<tr>
<td>کراتینین (IU/L) ALT</td>
<td>۱۷۶±۰/۶۱</td>
<td>۱۸۱±۰/۶۲</td>
<td>۱۸۱±۰/۶۲</td>
<td>۱۸۱±۰/۶۲</td>
<td></td>
</tr>
<tr>
<td>(pg/ml) TNFα</td>
<td>۷۷±۱</td>
<td>۷۸±۱</td>
<td>۷۸±۱</td>
<td>۷۸±۱</td>
<td></td>
</tr>
<tr>
<td>(mg/l) HS – CRP</td>
<td>۳/۷۲±۰/۴۴</td>
<td>۳/۷۲±۰/۴۴</td>
<td>۳/۷۲±۰/۴۴</td>
<td>۳/۷۲±۰/۴۴</td>
<td></td>
</tr>
<tr>
<td>HOMA - IR</td>
<td>۷/۸۲±۰/۴۴</td>
<td>۷/۸۲±۰/۴۴</td>
<td>۷/۸۲±۰/۴۴</td>
<td>۷/۸۲±۰/۴۴</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۳- میانگین پارامترهای اسکدیاتیک قبل و پس از درمان در دو گروه دارو و کنترل

<table>
<thead>
<tr>
<th>متغیر</th>
<th>گروه دارو</th>
<th>قبل از دارمان</th>
<th>پس از دارمان</th>
<th>قبل از دارمان</th>
<th>پس از دارمان</th>
</tr>
</thead>
<tbody>
<tr>
<td>(nmol/ml) * TBARS</td>
<td>۲/۹۷±۰/۷</td>
<td>۳/۲±۰/۸</td>
<td>۳/۲±۰/۸</td>
<td>۳/۲±۰/۸</td>
<td></td>
</tr>
<tr>
<td>(nmol/ml) FRAP</td>
<td>۴/۲۷±۰/۵</td>
<td>۴/۳۳±۰/۷</td>
<td>۴/۳۳±۰/۷</td>
<td>۴/۳۳±۰/۷</td>
<td></td>
</tr>
<tr>
<td>دیتربیوگونزین (Pig/ml)</td>
<td>۵/۶۸±۰/۷</td>
<td>۶/۷۴±۰/۹</td>
<td>۶/۷۴±۰/۹</td>
<td>۶/۷۴±۰/۹</td>
<td></td>
</tr>
<tr>
<td>گروه کربونیل (nmol/ml)</td>
<td>۱/۰۰±۰/۱</td>
<td>۱/۰۰±۰/۱</td>
<td>۱/۰۰±۰/۱</td>
<td>۱/۰۰±۰/۱</td>
<td></td>
</tr>
</tbody>
</table>

* برای مقایسه معنی‌دار بود (P<۰/۰۵).
† نتایج کنترل: ۳۰ بیمار دیابتی

* نتایج دیابت: ۳۱ بیمار دیابتی

* نتایج میانگین جغرافیایی: احتراف معنی‌دار می‌باشد.

* نتایج معنی‌دار نشان دهنده توزیع نرمال داشته‌اند مقادیر ارائه شده میانگین جغرافیایی ± احتراف معنی‌دار می‌باشد.

* نتایج معنی‌دار نشان دهنده توزیع نرمال داشته‌اند مقادیر ارائه شده میانگین جغرافیایی ± احتراف معنی‌دار می‌باشد.

* نتایج معنی‌دار نشان دهنده توزیع نرمال داشته‌اند مقادیر ارائه شده میانگین جغرافیایی ± احتراف معنی‌دار می‌باشد.

* نتایج معنی‌دار نشان دهنده توزیع نرمال داشته‌اند مقادیر ارائه شده میانگین جغرافیایی ± احتراف معنی‌دار می‌باشد.
بحث

دبیت نوع ۴ بیک بیماران مزرعه و پیشرونده همراه با مقاومت به انسلین و یا کمبود آمی نیی نیست. افراد تولید رادیکال های آزاد اکسیژن می‌توانند با نقش در حفظ استحکام عامل توزت آنتی اکسیدان های داخلی یا فضای بدنی م Расک می‌کنند. به‌طوری‌که استحکام اکسیدان های مورد عوامل در افزایش عوارض مزمن در افراد مبتلا به بیماری می‌کرویوسکوپی و همچنین از نوع توزت آنتی اکسیدانی

فراوانی دیده می‌شود.

استخراج و انتقال عوامل اثر ناشدنی[۱۶]،

بیشتر کارآزمایی‌های بالینی که تاکنون انجام شده‌اند: کوتاه مدت بوده، حجم نمونه کمی داشته و فقط بارметرات اعتماد را مورد بررسی قرار داده‌اند و در مقایسه با مطالعات محتوای کشش یا جراحی‌های بالینی نتایج متغیر گیچ کننده داشته‌اند. در یک مطالعه برگه "Heart Outcome Prevention Evaluation" و نیمی از تعداد هم‌شده اثرات مفیدی بر عوارض میکرویوسکوپی در بیش از ۳۰۰۰ بیمار دیابت دیده نشد. است[۱۷].

در این مطالعه مکانیسم دفع دندان‌گیری گوتوزین را پس از ۳ ماه مصرف آنزیم ملعوه بهبود که یک پارامتر سبب تولید هب‌هائی است و تجویز ردیکال‌های آزاد اکسیژن بالینی را می‌تواند و یک گروه جدیدی از انتقال عوامل آنتی اکسیدانی همراه افراد انتقال آنتی اکسیدانی بر علی‌ullo

در کاهش در Melilotus Officinalis

نشان داده شده است که کاهش

بهبود تجویز ردیکال‌های آزاد اکسیژن بالینی را می‌تواند و یک گروه جدیدی از انتقال عوامل آنتی اکسیدانی همراه افراد انتقال آنتی اکسیدانی بر علی‌улی‌علی‌علی‌علی‌علی‌علی‌علی‌علی‌علی‌علی‌علی‌علی‌علی‌علی‌علی‌علی‌علی‌علی‌улی‌علی‌улی‌علی‌울ی‌علی‌علی‌علی‌علی‌علی‌علی‌علی‌علی‌علی‌علی‌علی‌علی‌

سیاستگزاری
نویسنده‌گان مراقب تنشک و قشردانی خود را از نظر افتاده شرکت تحقیقات غدد درون پی و توانبخشی و تأمین افراد شرکت کنندگان در این مطالعه بدان می‌دارند و نیز از شرکت‌‌های پارس‌روس به جهت تأمین دارو و داروئیان تنشک معیار گردیدند.

مأخذ

زمینه نشان دهند [37–32]؛ اما با توجه به این مطالعه مشکل است که بتوان اثر فیض آنژیپارس را به اثرات آنتی اسکیبادیتوآ آنتی پارس را به اثرات دیگری بجز اثرات آنتی اسکیبادیتوآ در بهبود بانی مشارکت شده با این ترکیب گیاهی جدید مؤثر هستند که با پیشینی در آینده مشخص شوند.

