اثر L- کارنیتین بر روی سطح نیتریک اکسید و فعالیت آنزیم مبدل آنزیوتانسین سرمی در موشاها صحراپی نرمال و دیابتی شده با استرپتازوسین

علی محمد شریفی*، مريم قادرپناه، سید ضیاء الدین حسینی مظفری؟

چکیده
مقادیر مشکلات قلبی- عروقی و آکوپنسیون پرفسی چشمانه است. اثرات مثبت L-کارنیتین بر پرفسی چشمانه مورد بررسی در این مطالعه ماند. در این مطالعه محققان اکسید، اثرات احتمالی (SBP) (L- کارنیتین بر سطح نیتریک اکسید (NO) و فعالیت آنزیم مبدل آنزیوتانسین (ACE) در موشاها صحراپی نرمال و دیابتی شده مورد مطالعه قرار گرفته است.

روش‌ها: در این مطالعه، عضلانات سر و مفصل‌های پا و دست مراحل سازمانی دارا بودند. دیابتی بودن شست خونی با تریتیوژورمی سوزرت (CT) در مراحل شده (D) و دیابتی درمان شده (C) مورد بررسی قرار گرفت. دیابتی بودن، سطح گروه و C در اثرات بین آن دسترسی داشتند و گروه‌های D منبع مشخصی از L- کارنیتین را در سرم بررسی ارزیابی گردید. آب مصرفی بطور روزانه در متابولیسم پس از طی 12 هفته میزان BP و فعالیت ACE سرم اریزیابی گردید. پایان‌ها: نشانگی سیستولیک در Gروه NO به سبب افزایش سطح NO در فاصله با Gروه چهارم سطح D کاهش می‌یافت. همچنین فعالیت ACE در فاصله با Gروه چهارم سطح D کاهش می‌یافت. به ترتیب نسبت به گروه NO در فاصله با Gروه چهارم سطح D کاهش می‌یافت.

نتیجه‌گیری: بهینه ترین دویان متوالی گرفت که L-کارنیتین ممکن است یکی از سطح NO کاهش Fعالیت ACE سرمی موجب کاهش SBP در موشاها صحراپی دیابتی Gردد.

واژگان کلیدی: L - کارنیتین، دیابت، فشارخون، نیتریک اکسید، آنزیم مبدل آنزیوتانسین

*نمازی: تهران، اخوان همت، بیمارستان میلان، دانشگاه علوم پزشکی ایران، دانشگاه علوم پزشکی ایران، دانشگاه علوم پزشکی، داربستار فارماکولوژی و مرکز تحقیقات سلولی مولکولی، تلفن: 09111238434-88-5269829: پست الکترونیک: sharifal@yahoo.com

سفیر نمازی

ارائه طرح: 1398/11/16
تاریخ پذیرش: 1399/1/11

کارتنیت‌های دیپت ای‌او دارای عوارض نسبت به بیماران بدون عوارض کاوش عمیقی دارد [20]. همچنین، در مطالعاتی، مصرف کامل L-کارتنیتین، سبب کاهش فشار خون در انسان‌ها به یک مراقبتی اولیه و موثر‌های صحرایی بر فیبر اسید نخودی گردید [11.22]. همچنین دریافت کامل L-کارتنیتین، منجر به گشادی عروق در موثر‌های صحرایی با بر فیبر اسید نخودی و دیابتی گردیده است و پیشنهاد می‌شود که سازوکار اثر L-کارتنیتین بر گشادی عروق احتمالاً از طریق تولید یا افزایش زست دستیابی تریک کسد متراکم از اندولوئوم باشد [23.24].

با این حال، حاضر اثرات L-کارتنیتین بر میزان تریک کسد و فعالیت آنزیم مبدل انزیوتانسین سرمی که از عوارض تعیین کننده مهم در تنظیم فشار خون و عوارض قلبی عروقی در افراد دیابتی، مشاهده می‌گردد. بنابراین، نتیجه‌گیری‌های محققان نشان داده که افزایش احتمالاً این عوامل تعیین کننده کاهش فشار خون در برخی از بیماران عورقی در پی رواج شده است [24].

آزمایش مبدل انزیوتانسین (ACE) می‌تواند از این سیستم رنین–انزیوتانسین با استفاده از سرمی که از عوارض تعیین کننده مهم در تنظیم فشار خون در پی رواج شده است [24].

روش‌ها

طرح تحقیق

Wistar - Kyoto

تعداد 40 حیوان صحرایی نر گونه WKY (Wistar-Kyoto) به‌طور تصادفی تحت شرایط قرار گرفتند. صحرایی یک گربه روتا (25-35 درجه سانتی‌گراد) با استرسی آزاد به آب آشامیدنی و/یا اعتیاد آگاهی‌های به‌طور تصادفی 4 دسته اصلی گروه کنترل درمان شدند. گروه کنترل درمان شده (CT) (تعداد: 10 رأس)، گروه دیابت درمان شده (D) (تعداد: 10 رأس) و گروه دیابتی درمان شده (DT) (تعداد: 10 رأس) ۱

[1] Essential
اندازه‌گیری میزان فعالیت ACE سرمی

میزان فعالیت ACE سرمی با استفاده از روش هپارکمگرافی مابع HPLC (با کارایی بالا) و همکاران Horiuchi [27] اندازه‌گیری گردید.


table

بیان‌ها

وزن‌بند

در پایان هفته 12 وزن بند کلیه گروه‌های اندازه‌گیری شد (جدول ۱). اگرچه میانگین وزن گروه کنترل (C) نسبت به گروه دیابت (D) پس از پایان هفته بی‌شب می‌باشد و لی این اختلاف از نظر آماری معنی‌دار نبود [۱/۰۶/۲۰۰۵] در پی برای ۱۲ هفته دوادهم مطالعه اندازه‌گیری شد. سلول‌های قبل و بعد از مداخله و نتایج یکپارچه از طی ۱۲ هفته مداخله در نهایی هفته دوادهم ACE و NO سرمی در انتهای هفته دوادهم شدند. سطح L-کارنئین را به مدت ۱۲ هفته دریافت نمودند.

اندازه‌گیری فشار خون سیستولیک tail blood

فشار خون سیستولیک با استفاده از روش دمی [۲-۳] (Power Lab, cuff) تست دستگاه ثبت کننده فشار دستگاهی مستقر. میانگین ۳ فشار خون سیستولیک در هر نوبت اندازه‌گیری و دو نوبت پراورود فشار خون استفاده گردید.

جمع آوری نمونه‌های سرمی

جمع آوری نمونه‌های سرمی، ابتدا از قلب حیوانات خون گرفته شد مدل به مدت ۱۰ دقیقه در سانتریفیوز گردید تا موم آن جدا شود. نمونه‌های سرمی تا زمان اندازه‌گیری در ACE و NO سرمی در ۲۰-۲۴ — ذخیره شد.

اندازه‌گیری میزان سرمی NO

میزان NO سرمی با استفاده از اندازه‌گیری متابولیت های آن این نیترات (NO- ۲) و نیتریت (NO- ۳) بر NO Assay Kit را باکنش گریس توسط ارزیابی Colorimetric (Roche Diagnostics, Germany) گردید [۲۸].

نتایج

پنجم شدند. دیابتی شدن با تزریق داخل صافی ۲۰ میلی گرم در کیلوگرم وزن بدن استرپتوزین (IP) داده به شکل صورت گرفت [۲۵] به روش STZ کنترل یک حجم مساوی از آب مصرف تزریق شد. سطح گلکز ادراری بالاتر از ۲۰۰ میلی گرم در دمی لیتر در حیوانات دریافت کننده استرپتوزین دیابتی بودن آنها را تایید می‌کرد و این مسئله با تغییر رنگ نوار ادرار قابل مشاهده بود.

DT و CT گروه C دو عدد آزاد به آب داشتند. گروه B دو عدد روزانه ۵۰۰ میلی گرم به آملاک وراموز وزن بدن L-کارنئین را به مدت ۱۲ هفته دریافت نمودند. گروه کارنئین دبی آب مصرفی حیوانات اضافه گردید و مقدار کارنئین تنظیم شد. فشار خون سیستولیک در پایان هفته دوادهم مطالعه اندازه‌گیری شد. حیوانات قبل و بعد از مداخله و نتایج یکپارچه از طی ۱۲ هفته مداخله نتایج هستند. سطح L-کارنئین را به مدت ۱۲ هفته دریافت نمودند.

اندازه‌گیری فشار خون سیستولیک tail blood

فشار خون سیستولیک با استفاده از روش دمی [۲–۳] (Power Lab, cuff) تست دستگاه ثبت کننده فشار دستگاهی مستقر. میانگین ۳ فشار خون سیستولیک در هر نوبت اندازه‌گیری و دو نوبت پراورود فشار خون استفاده گردید.

جمع آوری نمونه‌های سرمی

جمع آوری نمونه‌های سرمی، ابتدا از قلب حیوانات خون گرفته شد مدل به مدت ۱۰ دقیقه در سانتریفیوز گردید تا موم آن جدا شود. نمونه‌های سرمی تا زمان اندازه‌گیری در ACE و NO سرمی در ۲۰–۲۴ — ذخیره شد.

اندازه‌گیری میزان سرمی NO

میزان NO سرمی با استفاده از اندازه‌گیری متابولیت های آن این نیترات (NO- ۲) و نیتریت (NO- ۳) بر NO Assay Kit را باکنش گریس توسط ارزیابی Colorimetric (Roche Diagnostics, Germany) گردید [۲۸].
نمودار ۱- اندازه‌گیری وزن بدن (گرم) در گروه‌های کنترل و دیابتی درمان نشده و درمان شده با L-کارنیتین = D-کارنیتین = L-کارنیتین. با استفاده از آزمون آماری Unpaired Student’s Test D=CT, C=کنترل درمان نشده. 

جدول ۱- اندازه‌گیری وزن بدن، میزان فشار خون سیستولیک، سطح نیتریک اسکسید و فعالیت آنزیم مبدل آنزیوئتانسین سرم در گروه‌های کنترل و دیابتی درمان شده و درمان نشده

<table>
<thead>
<tr>
<th>میزان</th>
<th>کنترل درمان نشده</th>
<th>دیابتی درمان نشده</th>
<th>دیابتی درمان شده</th>
<th>L-کارنیتین</th>
<th>D-کارنیتین</th>
<th>C-کارنیتین</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن بدن (گرم)</td>
<td>278±32.4</td>
<td>281±42.5</td>
<td>313±64.2</td>
<td>313±64.2</td>
<td>313±64.2</td>
<td>313±64.2</td>
</tr>
<tr>
<td>فشار خون سیستولیک (mmHg)</td>
<td>114±6.4</td>
<td>114±6.4</td>
<td>97±6.4</td>
<td>97±6.4</td>
<td>97±6.4</td>
<td>97±6.4</td>
</tr>
<tr>
<td>فشار خون دیاستولیک (mmHg)</td>
<td>80±7.4</td>
<td>80±7.4</td>
<td>78±7.4</td>
<td>78±7.4</td>
<td>78±7.4</td>
<td>78±7.4</td>
</tr>
<tr>
<td>فعالیت آنزیم مبدل آنزیوئتانسین (µmol/min/lit)</td>
<td>40±6.4</td>
<td>40±6.4</td>
<td>50±6.4</td>
<td>50±6.4</td>
<td>50±6.4</td>
<td>50±6.4</td>
</tr>
</tbody>
</table>

نمودار ۲- اندازه‌گیری میزان فشار خون (میلی متریاژ) در گروه‌های کنترل و دیابتی درمان نشده و درمان شده با L-کارنیتین. با استفاده از آزمون آماری Unpaired Student’s Test D=CT, C=کنترل درمان نشده. 

اندازه‌گیری میزان فشار خون در دایابتی و کنترل درمان نشده، درمان شده با L-کارنیتین. با استفاده از آزمون آماری Unpaired Student’s Test D=CT, C=کنترل درمان نشده.
نمودار ۳- اندازه گیری سطح نیتروژین اکسید (میکرومول) سرم در گروه‌های کنترل و دیابتی درمان نشده و درمان شده با L- کاربینین

با استفاده از آزمون آماری Unpaired Student’s Test

- D = کنترل درمان شده با L- کاربینین
- CT = کنترل درمان نشده
- C = دیابتی درمان نشده
- DT = دیابتی درمان شده با L- کاربینین

تعداد = ۱۰ سر مهاجر

نمودار ۴- اندازه گیری میزان فعالیت آنزیم مبدل آنزیم‌های گلیکوژن (میکرومول/دقيقة لیتر) در گروه‌های کنترل و دیابتی

با استفاده از آزمون آماری Unpaired Student’s Test

- D = کنترل درمان شده با L- کاربینین
- CT = کنترل درمان نشده
- C = دیابتی درمان نشده
- DT = دیابتی درمان شده

تعداد = ۱۰ سر مهاجر

نمودار ۵- توزیع سرم NOx میزان NOx سرم در گروه C به‌طور کلی به‌طور کلی در گروه CT بالاتر است. NOx سرم در گروه D نسبت به گروه C در ۴۸/۸/۸۷±۸/۳/۷/۵/۰ در برایر (P<۰/۰۱)

نمودار ۶- فعالیت آنزیم مبدل آنزیم‌های گلیکوژن (ACE) بر اساس سرم C به‌طور کلی در گروه D به‌طور کلی بالاتر است. NOx سرم در گروه D نسبت به گروه C در ۴۸/۸/۸۷±۸/۳/۷/۵/۰ در برایر (P<۰/۰۱)

نمودار ۷- نتایج آزمون تحلیل همبستگی (NOx) سرم NOx سرم در گروه D به‌طور کلی بالاتر است. NOx سرم در گروه D نسبت به گروه C در ۴۸/۸/۸۷±۸/۳/۷/۵/۰ در برایر (P<۰/۰۱)
مشکلات قلبی عروقی و از جمله پرفشاری که خون از عوارض ناشی از ابتلا به دیابت طولانی مدت می‌باشد. 

نتایج حاصل از تحقیقات ما نشان داده که سطح NO در بدن انسان به سطح NO در دیابت دو برابر است. 

در تحقیق حاضر مساحت گردیده است که میزان NO در میزان متوسط درمان نشده (D) به مقدار 

میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

بیشک افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

بیشک افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

بیشک افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

بیشک افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

بیشک افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

بیشک افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

بیشک افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

بیشک افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

سپر از افزایش NO در میزان متوسط درمان نشده (C) به مقدار 

در نتیجه هیپورکسی در بدن می‌باشد [20]. 

تعداد اندیشگران اثر L- کربناتین بر روی سطح تیتریک اکسیدین
مجلة دیاتیت و لیپیدیت ایران بهار ۱۳۸۶، دوره ۶ (شماره ۳)

بنان eNOS بیان SHR انواعی کشت شده انسانی افراد داده‌ای که در این می‌توان اثر توجهی نمود این اثرات توسط مهارگردی که می‌توان آن را به تولید NO توسط کازنتین داد. بنوتو و همکاران سطح NO در این بررسی نشان داد سطح است. در LC در حضور مهارگردی NOS در حضور مهارگردی NO توسط معنی‌داری Herrera توسط نشان داد که می‌توان آن را به تولید NO توسط کازنتین داد. بنوتو و همکاران سطح NO در این بررسی نشان داد سطح است. در LC در حضور مهارگردی NOS در حضور مهارگردی NO توسط معنی‌داری Herrera توسط نشان داد که می‌توان آن را به تولید NO توسط کازنتین داد. بنوتو و همکاران سطح NO در این بررسی نشان داد سطح است. در LC در حضور مهارگردی NOS در حضور مهارگردی NO توسط معنی‌داری Herrera توسط نشان داد که می‌توان آن را به تولید NO توسط کازنتین داد. بنوتو و همکاران سطح NO در این بررسی نشان داد سطح است. در LC در حضور مهارگردی NOS در حضور مهارگردی NO توسط معنی‌داری Herrera توسط نشان داد که می‌توان آن را به تولید NO توسط کازنتین داد. بنوتو و همکاران سطح NO در این بررسی نشان داد سطح است. در LC در حضور مهارگردی NOS در حضور مهارگردی NO توسط معنی‌داری Herrera توسط نشان داد که می‌توان آن را به تولید NO توسط کازنتین داد. بنوتو و همکاران سطح NO در این بررسی نشان داد سطح است. در LC در حضور مهارگردی NOS در حضور مهارگردی NO توسط معنی‌داری Herrera توسط نشان داد که می‌توان آن را به تولید NO توسط کازنتین داد. بنوتو و همکاران سطح NO در این بررسی نشان داد سطح است. در LC در حضور مهارگردی NOS در حضور مهارگردی NO توسط معنی‌داری Herrera توسط نشان داد که می‌توان آن را به تولید NO توسط کازنتین داد. بنوتو و همکاران سطح NO در این بررسی نشان داد سطح است. در LC در حضور مهارگردی NOS در حضور مهارگردی NO توسط معنی‌داری Herrera توسط نشان داد که می‌توان آن را به تولید NO توسط کازنتین داد. بنوتو و همکاران سطح NO در این بررسی نشان داد سطح است. در LC در حضور مهارگردی NOS در حضور مهارگردی NO توسط معنی‌داری Herrera توسط نشان داد که می‌توان آن را به تولید NO توسط کازنتین داد. بنوتو و همکاران سطح NO در این بررسی نشان داد سطح است. در LC در حضور مهارگردی NOS در حضور مهارگردی NO توسط معنی‌داری Herrera توسط نشان داد که می‌توان آن را به تولید NO توسط کازنتین داد. بنوتو و همکاران سطح NO در این بررسی نشان داد سطح است. در LC در حضور مهارگردی NOS در حضور مهارگردی NO توسط معنی‌داری Herrera توسط نشان داد که می‌توان آن را به تولید NO توسط کازنتین داد. بنوتو و همکاران سطح NO در این بررسی نشان داد سطح است. در LC در حضور مهارگردی NOS در حضور مهارگردی NO توسط معنی‌داری Herrera توسط نشان داد که می‌توان آن را به تولید NO توسط کازنتین داد. بنوتو و همکاران سطح NO در این بررسی نشان داد سطح است. در LC در حضور مهارگردی NOS در حضور مهارگردی NO توسط معنی‌داری Herrera توسط نشان داد که می‌توان آن را به تولید NO توسط کازنتین داد. بنوتو و همکاران سطح NO در این بررسی نشان داد سطح است. در LC در حضور مهارگردی NOS در حضور مهارگردی NO توسط معنی‌داری Herrera توسط نشان D سبب می‌گردد. در این بسته دامه از تحقیق حاضر نشان داد که فشار خون D سبب می‌گردد. در این بسته دامه از تحقیق حاضر نشان D سبب می‌گردد. در این بسته دامه از تحقیق حاضر نشان D سبب می‌گردد. در این بسته دامه از تحقیق حاضر نشان D سبب می‌گردد. در این بسته دامه از تحقیق حاضر نشان D سبب می‌گردد. در این بسته دامه از تحقیق حاضر نشان D سبب می‌گردد. در این بسته دامه از تحقیق حاضر نشان D سبب می‌گردد. در این بسته دامه از تحقیق حاضر نشان D سبب می‌گردد. در این بسته D سبب می‌گردد. در این بسته دامه از تحقیق حاضر نشان D سبب می‌گردد. در این بسته دامه از تحقیق حاضر نشان D سبب می‌گردد. در این بسته دامه از تحقیق حاضر N32839 SHR و انسان [22] و بدون تأثیر در SHR و انسان [22] و بدون تأثیر در SHR و انسان [22] و بدون تأثیر در SHR و انسان [22] و بدون T تأثیر در SHR و انسان [22] و بدون Tأثیر در SHR و انسان [22] و بدون Tتیپشته این سبب کاهش آنتیاکسیدان نیست. بنوتو و همکاران سطح NO در این سبتیپشته این سبب کاهش آنتیاکسیدان نیست. بنوتو و H nopLOCBLC نمایشگر جنگلاتونین بر کربسازیکا، کالاترال و سوپرکربسازیکا سبب شده است که توجه می‌کند، و در این سبب شده است که توجه می‌کند، و در این سبب شده است که توجه می‌کند، و در این سبب شده است که توجه می‌کند، و در این سبب شده است که توجه می‌کند، و در این سبب شده است که توجه می‌کند، و در این سبب Sh از صحنه بعدی پرکسبندری ملاحظه نماید [32] بنابراین دارمانی به انسان LC می‌تواند سبب کاهش رادیکال‌های LC می‌تواند سبب کاهش RDR. سارکوراکدیریگر LC برای اثر شناسی، تأثیرات سطح NO در این بررسی نشان داد که می‌توان آن را به تولید NO توسط معنی‌داری Herrera توسط نشان داد که می‌توان آن را به تولید NO توسط معنی‌داری Herrera توسط نشان داد که می‌توان آن را به تولید NO توسط معنی‌داری Herrera توسط نشان داد که می‌توان آن را به تولید NO Tوسط معنی‌داری Herrera Tوسط نشان D سبب می‌گردد. در این B دیابتیت و لیپیدیت ایران بهار ۱۳۸۶، دوره ۶ (شماره ۳)
سازوکارهای دیفاین تأثیرات L-کارنیتنی نشان می‌دهد که مصرف L-کارنیتنی ۱۲ ماهه منجر به افزایش میزان تریگر اسکیم، کاهش عفونتی آنزیم مدل قلبی بیمارانی سرما و کاهش فشار خون در موش‌های صحرایی ممکن دارد که این امر مکان است بتواند در درمان پرفشار ناشی از دیابت و بیشگیری از بیماری‌های قلبی–عروقی معنا‌دار باشد. راه‌کار و مأثر واقع کردن بررسی‌های دقیق آینده در زمینه اثر LC بر سازوکارهای تنظیم کننده فشار خون در پرفشاری ناشی از دیابت می‌توان به بررسی اثرات LC بر پرفشاری ناشی از دیابت در آسیان، بررسی اثرات LC بر میزان فعالیت زین و آلفا‌دیلیون خون، بررسی اثرات LC بر سطح بدن و پروتئین با eNOS استفاده از RT-PCR و بررسی اثرات LC بر فشار خون، NO و ACE و پرفشاری ناشی از دیابت در دوره‌های زمانی کوترا و پیش‌تر از ۱۲ هفته برداخت.

نتایج این تحقیق صرف نظر از تغییر بعضی از

مآخذ


